全文获取类型
收费全文 | 555篇 |
免费 | 27篇 |
专业分类
582篇 |
出版年
2022年 | 2篇 |
2021年 | 3篇 |
2019年 | 5篇 |
2018年 | 8篇 |
2017年 | 6篇 |
2016年 | 8篇 |
2015年 | 14篇 |
2014年 | 17篇 |
2013年 | 26篇 |
2012年 | 24篇 |
2011年 | 24篇 |
2010年 | 18篇 |
2009年 | 21篇 |
2008年 | 25篇 |
2007年 | 23篇 |
2006年 | 33篇 |
2005年 | 22篇 |
2004年 | 29篇 |
2003年 | 29篇 |
2002年 | 15篇 |
2001年 | 26篇 |
2000年 | 22篇 |
1999年 | 14篇 |
1998年 | 4篇 |
1997年 | 2篇 |
1996年 | 2篇 |
1994年 | 2篇 |
1993年 | 3篇 |
1992年 | 17篇 |
1991年 | 16篇 |
1990年 | 12篇 |
1989年 | 14篇 |
1988年 | 10篇 |
1987年 | 8篇 |
1986年 | 9篇 |
1985年 | 7篇 |
1983年 | 7篇 |
1982年 | 4篇 |
1980年 | 3篇 |
1979年 | 5篇 |
1978年 | 3篇 |
1977年 | 6篇 |
1976年 | 5篇 |
1974年 | 2篇 |
1973年 | 4篇 |
1972年 | 4篇 |
1969年 | 5篇 |
1968年 | 3篇 |
1966年 | 2篇 |
1965年 | 1篇 |
排序方式: 共有582条查询结果,搜索用时 15 毫秒
91.
Expression in Escherichia coli of chemically synthesized gene for a novel opiate peptide alpha-neo-endorphin 下载免费PDF全文
S Tanaka T Oshima K Ohsue T Ono S Oikawa I Takano T Noguchi K Kangawa N Minamino H Matsuo 《Nucleic acids research》1982,10(5):1741-1754
Chemically synthesized alpha-neo-endorphin gene was fused to the Escherichia coli beta-galactosidase gene on the plasmid pKO13. The resulting recombinant DNA was used to transform E. coli cells. Radioimmunoassay for alpha-neo-endorphin in CNBr-treated bacterial cells showed that alpha-neo-endorphin was synthesized at approximately 5 x 10(5) molecules per single E. coli cell. One of the transformants, WA802/p alpha NE2, was used for alpha-neo-endorphin purification. From 10.9 g of wet cells, we isolated 4 mg of chemically pure and biologically active alpha-neo-endorphin. 相似文献
92.
Kensuke Yotsumoto Taro Saito Akiko Asada Takayuki Oikawa Taeko Kimura Chiyoko Uchida Koichi Ishiguro Takafumi Uchida Masato Hasegawa Shin-ichi Hisanaga 《The Journal of biological chemistry》2009,284(25):16840-16847
Neurodegenerative tauopathies, including Alzheimer disease, are characterized by abnormal hyperphosphorylation of the microtubule-associated protein Tau. One group of tauopathies, known as frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), is directly associated with mutations of the gene tau. However, it is unknown why mutant Tau is highly phosphorylated in the patient brain. In contrast to in vivo high phosphorylation, FTDP-17 Tau is phosphorylated less than wild-type Tau in vitro. Because phosphorylation is a balance between kinase and phosphatase activities, we investigated dephosphorylation of mutant Tau proteins, P301L and R406W. Tau phosphorylated by Cdk5-p25 was dephosphorylated by protein phosphatases in rat brain extracts. Compared with wild-type Tau, R406W was dephosphorylated faster and P301L slower. The two-dimensional phosphopeptide map analysis suggested that faster dephosphorylation of R406W was due to a lack of phosphorylation at Ser-404, which is relatively resistant to dephosphorylation. We studied the effect of the peptidyl-prolyl isomerase Pin1 or microtubule binding on dephosphorylation of wild-type Tau, P301L, and R406W in vitro. Pin1 catalyzes the cis/trans isomerization of phospho-Ser/Thr-Pro sequences in a subset of proteins. Dephosphorylation of wild-type Tau was reduced in brain extracts of Pin1-knockout mice, and this reduction was not observed with P301L and R406W. On the other hand, binding to microtubules almost abolished dephosphorylation of wild-type and mutant Tau proteins. These results demonstrate that mutation of Tau and its association with microtubules may change the conformation of Tau, thereby suppressing dephosphorylation and potentially contributing to the etiology of tauopathies.One of hallmarks of Alzheimer disease (AD)3 pathology is neurofibrillary tangles, which are composed of paired helical filaments (PHFs), aggregates of the abnormally phosphorylated microtubule-associated protein Tau. Intracellular inclusions comprising Tau are also found in several other neurodegenerative diseases, including Pick disease, progressive supranuclear palsy, corticobasal degeneration, and frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), collectively called tauopathies (1–3). Identification of Tau as a causative gene of the inherited tauopathy FTDP-17 reveals that Tau mutation is sufficient to cause disease (4–6). However, the impact Tau mutations have on neurodegeneration remains unknown.Tau proteins in inclusions are hyperphosphorylated, and extensive studies have identified the phosphorylation sites; for example, more than 20 sites have been identified in PHF-Tau obtained from AD brains (7, 8). Tau can be phosphorylated by a variety of protein kinases, including glycogen synthase kinase 3β (GSK3β), cyclin-dependent kinase 5 (Cdk5), mitogen-activated protein kinase, cAMP-dependent protein kinase (PKA), microtubule affinity regulating kinase, and others (9–11). Tau is predominantly phosphorylated on the Ser or Thr residue in Ser/Thr-Pro sequences, suggesting the involvement of proline-directed protein kinases such as GSK3β and Cdk5 in hyperphosphorylation. A critical question is how mutations in Tau induce hyperphosphorylation in brain (12). Early phosphorylation experiments in vitro and in cultured cells have shown that mutant Tau is less phosphorylated than wild-type (WT) Tau (13–18). However, two later studies demonstrated higher phosphorylation of mutant Tau using brain extracts as a source of protein kinases in the presence of protein phosphatase inhibitor okadaic acid (19) or in immortalized cortical cells (20). However, it is not fully understood how mutant Tau becomes highly phosphorylated in vivo.Tau hyperphosphorylation could also be attributed to reduced dephosphorylation activity. Tau is dephosphorylated in vitro by any of the major four classes of protein phosphatases, PP1, PP2A, PP2B, and PP2C, but PP2A is thought to be the major protein phosphatase that regulates Tau phosphorylation state in brains (21–23). PP2A activity reportedly is decreased in AD brain (24–26), and highly phosphorylated Tau in PHF is relatively resistant to dephosphorylation by PP2A (27). Few studies have been done on dephosphorylation of mutant Tau, however, and thus the mechanism remains unclear. One putative factor involved in mutant Tau dephosphorylation is the peptidyl-prolyl isomerase Pin1. Pin1 catalyzes the cis/trans isomerization of phospho-Ser/Thr-Pro sequences in a subset of proteins (28, 29). Pin1 is involved in AD pathogenesis as shown by the fact that it is found in neurofibrillary tangles and that Tau is hyperphosphorylated in Pin1-deficient mouse brains (30). Pin1 is indicated to facilitate Tau dephosphorylation via PP2A by binding to the phospho-Thr-231-Pro or phospho-Thr-212-Pro site (31–33). The effect of Pin1 on the stability of mutant Tau was recently reported (34), but a detailed analysis of Pin1 action on mutant Tau has not been reported. Another possible factor affecting dephosphorylation of mutant Tau is the binding to microtubules. We previously showed that phosphorylation of Tau is stimulated upon binding to microtubules (35). We thus hypothesized that binding to microtubules may also affect the extent of Tau dephosphorylation.Here, we examined the effects of Pin1 and binding to microtubules on dephosphorylation of WT and FTDP-17 mutant (P301L and R406W) Tau proteins that had been phosphorylated by Cdk5-p25 or Cdk5-p35. P301L and R406W are two distinct types of FTDP-17 mutants that have been studied well. We show for the first time how the regulation of Tau dephosphorylation can contribute to the observed Tau hyperphosphorylation in tauopathies. 相似文献
93.
Wheelock CE Nakagawa Y Harada T Oikawa N Akamatsu M Smagghe G Stefanou D Iatrou K Swevers L 《Bioorganic & medicinal chemistry》2006,14(4):1143-1159
In this study, 172 diacylhydrazine analogs were examined for their ability to activate an ecdysone (molting hormone)-dependent reporter gene in a silkworm (Bombyx mori) cell-based high-throughput screening assay. The measured EC(50) values (concentration required to cause an effect in 50% of the cells) were used to construct a 3-D QSAR model that describes the ecdysone agonist activities of the diacylhydrazine analogs. Of these compounds, 14 exhibited no activity and were excluded from the 3-D QSAR analysis. The resulting equation described approximately 74% of the activity for 158 compounds. The final equation consisted of 42% electrostatic and 58% steric effects (r(2) = 0.74 and q(2) = 0.45). Comparative molecular field analysis (CoMFA) was used to visualize the steric and electrostatic potential fields that were favorable and unfavorable for biological activity. Of particular interest was the observation that the hydrophobic parameter (logP) was not necessary for describing the observed activities, although previous studies have cited the importance of hydrophobic parameters in both classical and 3-D QSAR analyses of these compounds. Modeling studies of the B. mori ecdysone receptor supported the observed physicochemical parameters required for activity reported by the CoMFA models. Comparison of the present analysis with those performed using other lepidopteran assay systems evidenced a high degree of correlation (r(2) = 0.81 for a Sf-9 cell-based assay and r(2) = 0.89 for a Chilo suppressalis integument-based assay), indicating that it is valid to compare the results generated with the B. mori cell-based system to those generated with previous lepidopteran assays. This novel assay system is amendable to a high-throughput screening format and should greatly increase our ability to discover novel agonists of molting hormone (ecdysone) activity. 相似文献
94.
95.
Masuda M Suzuki N Taniguchi S Oikawa T Nonaka T Iwatsubo T Hisanaga S Goedert M Hasegawa M 《Biochemistry》2006,45(19):6085-6094
Alpha-synuclein is the major component of the filamentous inclusions that constitute defining characteristics of Parkinson's disease and other alpha-synucleinopathies. Here we have tested 79 compounds belonging to 12 different chemical classes for their ability to inhibit the assembly of alpha-synuclein into filaments in vitro. Several polyphenols, phenothiazines, porphyrins, polyene macrolides, and Congo red and its derivatives, BSB and FSB, inhibited alpha-synuclein filament assembly with IC(50) values in the low micromolar range. Many compounds that inhibited alpha-synuclein assembly were also found to inhibit the formation of Abeta and tau filaments. Biochemical analysis revealed the formation of soluble oligomeric alpha-synuclein in the presence of inhibitory compounds, suggesting that this may be the mechanism by which filament formation is inhibited. Unlike alpha-synuclein filaments and protofibrils, these soluble oligomeric species did not reduce the viability of SH-SY5Y cells. These findings suggest that the soluble oligomers formed in the presence of inhibitory compounds may not be toxic to nerve cells and that these compounds may therefore have therapeutic potential for alpha-synucleinopathies and other brain amyloidoses. 相似文献
96.
97.
98.
Thanan R Oikawa S Yongvanit P Hiraku Y Ma N Pinlaor S Pairojkul C Wongkham C Sripa B Khuntikeo N Kawanishi S Murata M 《Free radical biology & medicine》2012,52(8):1465-1472
Carbonylation is an irreversible and irreparable protein modification induced by oxidative stress. Cholangiocarcinoma (CCA) is associated with chronic inflammation caused by liver fluke infection. To investigate the relationship between protein carbonylation and CCA progression, carbonylated proteins were detected by 2D OxyBlot and identified by MALDI-TOF/TOF analyses in pooled CCA tissues in comparison to adjacent nontumor tissues and normal liver tissues. We identified 14 highly carbonylated proteins in CCA tissues. Immunoprecipitation and Western blot analyses of individual samples confirmed significantly greater carbonylation of serotransferrin, heat shock protein 70-kDa protein 1 (HSP70.1), and α1-antitrypsin (A1AT) in tumor tissues compared to normal tissues. The oxidative modification of these proteins was significantly associated with poor prognoses as determined by the Kaplan-Meier method. LC-MALDI-TOF/TOF mass spectrometry identified R50, K327, and P357 as carbonylated sites in serotransferrin, HSP70.1, and A1AT, respectively. Moreover, iron accumulation was significantly higher in CCA tissues with, compared to those without, carbonylated serotransferrin. We conclude that carbonylated serotransferrin-associated iron accumulation may induce oxidative stress via the Fenton reaction, and the carbonylation of HSP70.1 with antioxidative property and A1AT with protease inhibitory capacity may cause them to become dysfunctional, leading to CCA progression. 相似文献
99.
Ogawa K Hiraku Y Oikawa S Murata M Sugimura Y Kawamura J Kawanishi S 《Mutation research》2003,539(1-2):145-155
Procarbazine [N-isopropyl-alpha-(2-methylhydrazino)-p-toluamide], a hydrazine derivative, which has been shown to have effective antineoplastic activity, induces cancer in some experimental animals and humans. To clarify a new mechanism for its carcinogenic effect, we examined DNA damage induced by procarbazine in the presence of metal ion, using 32P-5'-end-labeled DNA fragments obtained from the human p53 tumor suppressor gene and the c-Ha-ras-1 protooncogene. Procarbazine plus Cu(II) induced piperidine-labile and formamidopyrimidine-DNA glycosylase-sensitive lesions at the 5'-ACG-3' sequence, complementary to a hotspot of the p53 gene, and the 5'-TG-3' sequence. Catalase partially inhibited DNA damage, suggesting that not only H(2)O(2) but also other reactive species are involved. Procarbazine plus Cu(II) significantly increased the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine, which was completely inhibited by calatase. Electron spin resonance spin-trapping experiments revealed that methyl radicals were generated from procarbazine and Cu(II). On the basis of these findings, it is considered that procarbazine causes DNA damage through non-enzymatic formation of the Cu(I)-hydroperoxo complex and methyl radicals. In conclusion, in addition to alkylation, oxidative DNA damage may play important roles in not only antitumor effects but also mutagenesis and carcinogenesis induced by procarbazine. 相似文献
100.
An integrative approach to the identification of Arabidopsis and rice genes involved in xylan and secondary wall development 总被引:2,自引:0,他引:2
Oikawa A Joshi HJ Rennie EA Ebert B Manisseri C Heazlewood JL Scheller HV 《PloS one》2010,5(11):e15481
Xylans constitute the major non-cellulosic component of plant biomass. Xylan biosynthesis is particularly pronounced in cells with secondary walls, implying that the synthesis network consists of a set of highly expressed genes in such cells. To improve the understanding of xylan biosynthesis, we performed a comparative analysis of co-expression networks between Arabidopsis and rice as reference species with different wall types. Many co-expressed genes were represented by orthologs in both species, which implies common biological features, while some gene families were only found in one of the species, and therefore likely to be related to differences in their cell walls. To predict the subcellular location of the identified proteins, we developed a new method, PFANTOM (plant protein family information-based predictor for endomembrane), which was shown to perform better for proteins in the endomembrane system than other available prediction methods. Based on the combined approach of co-expression and predicted cellular localization, we propose a model for Arabidopsis and rice xylan synthesis in the Golgi apparatus and signaling from plasma membrane to nucleus for secondary cell wall differentiation. As an experimental validation of the model, we show that an Arabidopsis mutant in the PGSIP1 gene encoding one of the Golgi localized candidate proteins has a highly decreased content of glucuronic acid in secondary cell walls and substantially reduced xylan glucuronosyltransferase activity. 相似文献