首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   11篇
  221篇
  2024年   1篇
  2022年   9篇
  2021年   5篇
  2020年   4篇
  2019年   7篇
  2018年   13篇
  2017年   10篇
  2016年   7篇
  2015年   10篇
  2014年   13篇
  2013年   11篇
  2012年   16篇
  2011年   11篇
  2010年   12篇
  2009年   5篇
  2008年   8篇
  2007年   9篇
  2006年   18篇
  2005年   8篇
  2004年   8篇
  2003年   13篇
  2002年   9篇
  2000年   2篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1974年   2篇
  1972年   1篇
排序方式: 共有221条查询结果,搜索用时 15 毫秒
21.
Ghosh KS  Maiti TK  Debnath J  Dasgupta S 《Proteins》2007,69(3):566-580
We report the effect of the natural polyphenolic compounds from green tea on the catalytic activity of Ribonuclease A (RNase A). The compounds behave as noncompetitive inhibitors of the protein with inhibition constants ranging from 80-1300 microM. The dissociation constants range from 50-150 microM for the RNase A-polyphenol complexes as determined by ultraviolet (UV) and circular dichroism (CD) studies. We have also investigated the changes in the secondary structure of RNase A on complex formation by CD and Fourier transformed infrared (FTIR) spectroscopy. The presence of the gallate moiety has been shown to be important for the inhibition of enzymatic activity. Docking studies for these compounds indicate that the preferred site of binding is the region encompassing residues 34-39 with possible hydrogen bonding with Lys 7 and Arg 10. Finally we have also looked at changes in the accessible surface area of the interacting residues on complex formation for an insight into the residues involved in the interaction.  相似文献   
22.
Although aldose reductase (AR) is a critical participant in osmoregulation, and the metabolism of glucose and aldehydes derived from lipid peroxidation, post-translational mechanisms regulating its activity have not been identified. In this paper, we report that stimulation of protein kinase C (PKC) in several cell types induces phosphorylation of AR and translocation of the phosphorylated protein to the mitochondria. In vitro, recombinant AR was directly phosphorylated by activated PKC, suggesting that AR may be an in vivo PKC substrate. Together, these observations reveal a novel link between PKC activation and the regulation of glucose and aldehyde metabolism.  相似文献   
23.
This paper demonstrates that miscible blends from water-insoluble polymers, such as poly(2,4,4-trimethylhexamethylene terephthalamide) (1), methylamine imidized poly(methyl methacrylate) (2), and aromatic poly(ether sulfone) (3) and water-soluble polymers, such as poly(2-ethyl-2-oxazoline) (4) and poly(N-vinyl pyrrolidone) (5), respectively, represent a new class of supramolecular hydrogels. When the degree of polymerization (DP) of the water-soluble polymer is larger than that of water-insoluble polymer, the resulting hydrogels adsorb extremely high amounts of water (i.e., 229 wt % in the case of the hydrogel 1/4) and remain mechanically tough. The high water uptake capability of these blends is explained by a supramolecular network structure generated by H-bonding and/or other noncovalent interactions between the water-insoluble hydrophobic polymer and water-soluble hydrophilic segments as reversible cross-linking points interconnected by hydrophilic water soluble segments. The glass transition temperatures of these hydrogels are tailored via the ratio between the weight percent of the two polymers and by the glass transition temperature of the parent polymers. These supramolecular hydrogels can be processed from melt or solution and maintain excellent mechanical properties both in dry and in the water swollen state. This class of hydrogels is of interest for areas such as membranes, contact lenses, tissue engineering, and other biomedical applications.  相似文献   
24.
We have studied the importance of charge and hydrogen-bonding potential of the phosphodiester backbone for binding and cleavage by EcoRI restriction endonuclease. We used 12-mer oligodeoxynucleotide substrates with single substitutions of phosphates by chiral methylphosphonates at each position of the recognition sequence -pGpApApTpTpCp-. Binding was moderately reduced between 4- and 400-fold more or less equally for the R(P) and S(P)-analogues mainly caused by missing charge interaction. The range of cleavage effects was much wider. Four substrates were not cleaved at all. At both flanking positions and in the purine half of the sequence up to the central position, cleavage was more impaired than binding and differences between R(P) and S(P) diastereomeres were more pronounced. These effects are easily interpreted by direct phosphate contacts seen in the crystal structure. For the effects of substitutions in the pyrimidine half of the recognition sequence, more indirect effects have to be discussed.  相似文献   
25.
Angiogenesis is a fundamental process by which new blood vessels are formed. The angiogenesis process is induced by several growth factors. Among them angiogenin is the most potent blood vessel inducer known. In this paper, we have investigated the effect of green tea polyphenols, mainly the catechins, on an angiogenin-like protein induced angiogenesis process. The angiogenin-like protein was isolated from goat serum and the effect of green tea components was tested by the chicken chorioallantoic membrane (CAM) assay. The results show that green tea components are capable of reducing the vascularization on CAM that is induced by the angiogenin-like protein.  相似文献   
26.
Hookworm infection is one of the most important parasitic infections of humans, possibly outranked only by malaria as a cause of misery and suffering. An estimated 1.2 billion people are infected with hookworm in areas of rural poverty in the tropics and subtropics. Epidemiological data collected in China, Southeast Asia and Brazil indicate that, unlike other soil-transmitted helminth infections, the highest hookworm burdens typically occur in adult populations, including the elderly. Emerging data on the host cellular immune responses of chronically infected populations suggest that hookworms induce a state of host anergy and immune hyporesponsiveness. These features account for the high rates of hookworm reinfection following treatment with anthelminthic drugs and therefore, the failure of anthelminthics to control hookworm. Despite the inability of the human host to develop naturally acquired immune responses to hookworm, there is evidence for the feasibility of developing a vaccine based on the successes of immunising laboratory animals with either attenuated larval vaccines or antigens extracted from the alimentary canal of adult blood-feeding stages. The major antigens associated with each of these larval and adult hookworm vaccines have been cloned and expressed in prokaryotic and eukaryotic systems. However, only eukaryotic expression systems (e.g., yeast, baculovirus, and insect cells) produce recombinant proteins that immunologically resemble the corresponding native antigens. A challenge for vaccinologists is to formulate selected eukaryotic antigens with appropriate adjuvants in order to elicit high antibody titres. In some cases, antigen-specific IgE responses are required to mediate protection. Another challenge will be to produce anti-hookworm vaccine antigens at high yield low cost suitable for immunising large impoverished populations living in the developing nations of the tropics.  相似文献   
27.
Maiti TK  Ghosh KS  Dasgupta S 《Proteins》2006,64(2):355-362
(-)-Epigallocatechin-3-gallate (EGCG), the major constituent of green tea has been reported to prevent many diseases by virtue of its antioxidant properties. The binding of EGCG with human serum albumin (HSA) has been investigated for the first time by using fluorescence, circular dichroism (CD), Fourier transform infrared (FTIR) spectroscopy, and protein-ligand docking. We observed a quenching of fluorescence of HSA in the presence of EGCG. The binding parameters were determined by a Scatchard plot and the results were found to be consistent with those obtained from a modified Stern-Volmer equation. From the thermodynamic parameters calculated according to the van't Hoff equation, the enthalpy change deltaH degrees and entropy change deltaS degrees were found to be -22.59 and 16.23 J/mol K, respectively. These values suggest that apart from an initial hydrophobic association, the complex is held together by van der Waals interactions and hydrogen bonding. Data obtained by fluorescence spectroscopy, CD, and FTIR experiments along with the docking studies suggest that EGCG binds to residues located in subdomains IIa and IIIa of HSA. Specific interactions are observed with residues Trp 214, Arg 218, Gln 221, Asn 295 and Asp 451. We have also looked at changes in the accessible surface area of the interacting residues on binding EGCG for a better understanding of the interaction.  相似文献   
28.
The transversal distribution of the free NH2 groups associated with phosphatidyl ethanolamine and the intrinsic membrane proteins of the purified pig gastric microsomes was quantitated and their relations to the function of the gastric K+-stimulated ATPase was investigated. Three different chemical probes such as 2,4,6-trinitrobenzene sulfonic acid (TNBS), 1-fluoro-2,4-dinitrobenzene (FDNB), and 2-methoxy-2,4-diphenyl-3(2H)-furanone (MDPF) were used for the study. The structure-function relationship of the membrane NH2 groups was studied after modification with the probes under various conditions and relating the inhibition of the K+-stimulated ATPase to the ATPase-dependent H+ accumulation by the gastric microsomal vesicles. TNBS (2 mm) inhibits nearly completely the K+-stimulated ATPase and the vesicular dye accumulation, both in presence and absence of valinomycin plus K+. Both the K+-ATPase and dye uptake were largely (about 50%) protected against TNBS inhibition if the treatment with TNBS was carried out in presence of 2 mm ATP. TNBS and FDNB labeled 70% of the total microsomal PE; the intra- and extravesicular orientation being 48 and 22%, respectively. The presence or absence of ATP did not have any effect on the TNBS labeling of microsomal PE. ATP, however, significantly (P < 0.05) reduced the labeling of protein-bound NH2 groups of gastric microsomes by TNBS. The intra- and extravesicular orientation of the protein NH2 groups were 60 and 40%, respectively. Eighteen percent of the total protein-NH2 appeared to be associated with the K+-stimulated ATPase; the rest being associated with non-ATPase proteins of the microsomes. About half (50%) of the total free NH2 groups of the K+-stimulated ATPase were exposed to the vesicle exterior and were found to play critical roles in gastric ATPase function. The generation of florescence after MDPF conjugation of gastric microsomes was largely (50%) inhibited by ATP. ATP also protected completely the MDPF inhibition of gastric K+-stimulated ATPase and dye uptake.  相似文献   
29.
Glioblastoma (GBM) is a highly infiltrative brain tumor in which cells with properties of stem cells, called glioblastoma stem cells (GSCs), have been identified. In general, the dominant view is that GSCs are responsible for the initiation, progression, invasion and recurrence of this tumor. In this study, we addressed the question whether the differentiation status of GBM cells is associated with their invasive capacity. For this, several primary GBM cell lines were used, cultured either as neurospheres known to enrich for GSCs or in medium supplemented with 10% FCS that promotes differentiation. The differentiation state of the cells was confirmed by determining the expression of stem cell and differentiation markers. The migration/invasion potential of these cells was tested using in vitro assays and intracranial mouse models. Interestingly, we found that serum-induced differentiation enhanced the invasive potential of GBM cells, which was associated with enhanced MMP9 expression. Chemical inhibition of MMP9 significantly reduced the invasive potential of differentiated cells in vitro. Furthermore, the serum-differentiated cells could revert back to an undifferentiated/stem cell state that were able to form neurospheres, although with a reduced efficiency as compared to non-differentiated counterparts. We propose a model in which activation of the differentiation program in GBM cells enhances their infiltrative potential and that depending on microenvironmental cues a significant portion of these cells are able to revert back to an undifferentiated state with enhanced tumorigenic potential. Thus, effective therapy should target both GSCs and differentiated offspring and targeting of differentiation-associated pathways may offer therapeutic opportunities to reduce invasive growth of GBM.  相似文献   
30.
Ubiquitin carboxy-terminal hydrolase L5 (UCHL5) is a proteasome-associated deubiquitinating enzyme, which, along with RPN11 and USP14, is known to carry out deubiquitination on proteasome. As a member of the ubiquitin carboxy-terminal hydrolase (UCH) family, UCHL5 is unusual because, unlike UCHL1 and UCHL3, it can process polyubiquitin chain. However, it does so only when it is bound to the proteasome; in its free form, it is capable of releasing only relatively small leaving groups from the C-terminus of ubiquitin. Such a behavior might suggest at least two catalytically distinct forms of the enzyme, an apo form incapable of chain processing activity, and a proteasome-induced activated form capable of cleaving polyubiquitin chain. Through the crystal structure analysis of two truncated constructs representing the catalytic domain (UCH domain) of this enzyme, we were able to visualize a state of this enzyme that we interpret as its inactive form, because the catalytic cysteine appears to be in an unproductive orientation. While this work was in progress, the structure of a different construct representing the UCH domain was reported; however, in that work the structure reported was that of an inactive mutant [catalytic Cys to Ala; Nishio K et al. (2009) Biochem Biophys Res Commun 390, 855-860], which precluded the observation that we are reporting here. Additionally, our structures reveal conformationally dynamic parts of the enzyme that may play a role in the structural transition to the more active form.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号