首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5197篇
  免费   542篇
  国内免费   5篇
  2021年   60篇
  2018年   83篇
  2017年   50篇
  2016年   91篇
  2015年   136篇
  2014年   157篇
  2013年   220篇
  2012年   249篇
  2011年   217篇
  2010年   141篇
  2009年   132篇
  2008年   199篇
  2007年   235篇
  2006年   208篇
  2005年   211篇
  2004年   188篇
  2003年   174篇
  2002年   165篇
  2001年   151篇
  2000年   186篇
  1999年   142篇
  1998年   79篇
  1997年   96篇
  1996年   67篇
  1995年   75篇
  1994年   49篇
  1993年   50篇
  1992年   76篇
  1991年   87篇
  1990年   94篇
  1989年   88篇
  1988年   80篇
  1987年   74篇
  1986年   76篇
  1985年   81篇
  1984年   72篇
  1983年   71篇
  1982年   51篇
  1981年   62篇
  1979年   57篇
  1978年   51篇
  1977年   48篇
  1976年   44篇
  1975年   50篇
  1974年   45篇
  1973年   49篇
  1972年   41篇
  1971年   40篇
  1969年   43篇
  1968年   40篇
排序方式: 共有5744条查询结果,搜索用时 15 毫秒
991.
Parkinson’s disease is a debilitating movement disorder characterized by altered levels of α6β21 (1 indicates the possible presence of additional subunits) nicotinic acetylcholine receptors (nAChRs) localized on presynaptic striatal catecholaminergic neurons. α-Conotoxin MII (α-CTx MII) is a highly useful ligand to probe α6β2 nAChRs structure and function, but it does not discriminate among closely related α61 nAChR subtypes. Modification of the α-CTx MII primary sequence led to the identification of α-CTx MII[E11A], an analog with 500–5300-fold discrimination between α61 subtypes found in both human and non-human primates. α-CTx MII[E11A] binds most strongly (femtomolar dissociation constant) to the high affinity α6 nAChR, a subtype that is selectively lost in Parkinson’s disease. Here, we present the three-dimensional solution structure for α-CTx MII[E11A] as determined by two-dimensional 1H NMR spectroscopy to 0.13 ± 0.09 ? backbone and 0.45 ± 0.08 ? heavy atom root-mean-square deviation from mean structure. Structural comparisons suggest that the increased hydrophobic area of α-CTx MII[E11A] relative to other members of the α-CTx family may be responsible for its exceptionally high affinity for α6α4β21 nAChR as well as discrimination between α6β2 and α3β2 containing nAChRs. This finding may enable the rational design of novel peptide analogs that demonstrate enhanced specificity for α61 nAChR subunit interfaces and provide a means to better understand nAChR structural determinants that modulate brain dopamine levels and the pathophysiology of Parkinson’s disease.  相似文献   
992.
The silks from the cob weaving spider, Latrodectus hesperus (black widow), have been examined with the goal of expanding our understanding of the relationship between the protein structure and mechanical performance of these unique biomaterials. The scaffolding, dragline and inner egg case silks each appear to be distinct fibers based on mole percent amino acid composition and polypeptide composition. Further, we find that the amino acid composition of dragline and egg case silk are similar to the analogous silks produced by orb weaving spiders, while scaffolding silk may represent a novel silk. The black widow silks are comprised of multiple high molecular weight polypeptides, however, the egg case and scaffolding silks also contain some smaller polypeptides.  相似文献   
993.
All mammalian cells depend on polyamines for normal growth and proliferation, but the exact roles of polyamines at the molecular level remain largely unknown. The RNA-binding protein HuR modulates the stability and translation of many target mRNAs. Here, we show that in rat intestinal epithelial cells (IECs), polyamines enhanced HuR association with the 3′-untranslated region of the c-Myc mRNA by increasing HuR phosphorylation by Chk2, in turn promoting c-Myc translation. Depletion of cellular polyamines inhibited Chk2 and reduced the affinity of HuR for c-Myc mRNA; these effects were completely reversed by addition of the polyamine putrescine or by Chk2 overexpression. In cells with high content of cellular polyamines, HuR silencing or Chk2 silencing reduced c-Myc translation and c-Myc expression levels. Our findings demonstrate that polyamines regulate c-Myc translation in IECs through HuR phosphorylation by Chk2 and provide new insight into the molecular functions of cellular polyamines.  相似文献   
994.
Directed cell migration requires the coordination of growth factor and cell adhesion signaling and is of fundamental importance during embryonic development, wound repair, and pathological conditions such as tumor metastasis. Herein, we demonstrate that the ArfGAP, paxillin-kinase-linker (PKL/GIT2), is tyrosine phosphorylated in response to platelet-derived growth factor (PDGF) stimulation, in an adhesion dependent manner and is necessary for directed cell migration. Using a combination of pharmacological inhibitors, knockout cells and kinase mutants, FAK, and Src family kinases were shown to mediate PDGF-dependent PKL tyrosine phosphorylation. In fibroblasts, expression of a PKL mutant lacking the principal tyrosine phosphorylation sites resulted in loss of wound-induced cell polarization as well as directional migration. PKL phosphorylation was necessary for PDGF-stimulated PKL binding to the focal adhesion protein paxillin and expression of paxillin or PKL mutants defective in their respective binding motifs recapitulated the polarization defects. RNA interference or expression of phosphorylation mutants of PKL resulted in disregulation of PDGF-stimulated Rac1 and PAK activities, reduction of Cdc42 and Erk signaling, as well as mislocalization of βPIX. Together these studies position PKL as an integral component of growth factor and cell adhesion cross-talk signaling, controlling the development of front–rear cell polarity and directional cell migration.  相似文献   
995.
In this article we test the long‐term dematerialization potential for Australia in terms of materials, energy, and water use as well as CO2 emissions by introducing concrete targets for major sectors. Major improvements in the construction and housing, transport and mobility, and food and nutrition sectors in the Australian economy, if coupled with significant reductions in the resource export sectors, would substantially improve the current material, energy, and emission intensive pattern of Australia's production and consumption system. Using the Australian Stocks and Flows Framework we model all system interactions to understand the contributions of large‐scale changes in technology, infrastructure, and lifestyle to decoupling the economy from the environment. The modeling shows a considerable reduction in natural resource use, while energy and water use decrease to a much lesser extent because a reduction in natural resource consumption creates a trade‐off in energy use. It also shows that trade and economic growth may continue, but at a reduced rate compared with a business‐as‐usual scenario. The findings of our modeling are discussed in light of the large body of literature on dematerialization, eco‐efficiency, and rebound effects that may occur when efficiency is increased. We argue that Australia cannot rely on incremental efficiency gains but has to undergo a sustainability transition to achieve a low carbon future to keep in line with the international effort to avoid climate change and resource use conflicts. We touch upon the institutional changes that would be required to guide a sustainability transition in the Australian economy, such as an emission trading scheme.  相似文献   
996.
997.
998.
The fumarate reductases from S. frigidimarina NCIMB400 and S. oneidensis MR-1 are soluble and monomeric enzymes located in the periplasm of these bacteria. These proteins display two redox active domains, one containing four c-type hemes and another containing FAD at the catalytic site. This arrangement of single-electron redox co-factors leading to multiple-electron active sites is widespread in respiratory enzymes. To investigate the properties that allow a chain of single-electron co-factors to sustain the activity of a multi-electron catalytic site, redox titrations followed by NMR and visible spectroscopies were applied to determine the microscopic thermodynamic parameters of the hemes. The results show that the redox behaviour of these fumarate reductases is similar and dominated by a strong interaction between hemes II and III. This interaction facilitates a sequential transfer of two electrons from the heme domain to FAD via heme IV.  相似文献   
999.
The osteo‐anabolic effects of intermittent parathyroid hormone (PTH) treatment require insulin‐like growth factor (IGF) signaling through the IGF‐I receptor. A major downstream target of the IGF‐I receptor (via Akt) is the mammalian target of rapamycin (mTOR), a kinase involved in protein synthesis. We investigated whether the bone‐building effects of intermittent PTH require functional mTOR signaling. Mice were treated with daily PTH 1–34 (0, 10, 30, or 90 µg/kg) for 6 weeks in the presence or absence of rapamycin, a selective inhibitor of mTOR. We found that all PTH doses were effective in enhancing bone mass, whether rapamycin was present or not. Rapamycin had little to no effect on the anabolic response at low (10 µg) PTH doses, small effects in a minority of anabolic measures at moderate doses (30 µg), but the anabolic effects of high‐dose PTH (90 µg) were consistently and significantly suppressed by rapamycin (~4–36% reduction). Serum levels of Trap5b, a marker of resorption, were significantly enhanced by rapamycin, but these effects were observed whether PTH was absent or present. Our data suggest that intermittent PTH, particularly at lower doses, is effective in building bone mass in the presence of rapamycin. However, the full anabolic effects of higher doses of PTH are significantly suppressed by rapamycin, suggesting that PTH might normally activate additional pathways (including mTOR) for its enhanced high‐dose anabolic effects. Clinical doses of intermittent PTH could be an effective treatment for maintaining or increasing bone mass among patients taking rapamycin analogs for unrelated health issues. J. Cell. Physiol. 221: 579–585, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
1000.
Salmon have provided key insights into the relative influence of natural and sexual selection on major histocompatibility complex (MHC) variation. Natural selection on salmon MHC genes has been demonstrated in pathogen studies, and there is evidence of MHC-based mate choice (sexual selection). We tested whether parental MHC genes affect survivorship of juvenile Atlantic salmon (Salmo salar) by quantifying the influence of parental genome-wide relatedness and MHC genotype on survivorship to the swim-up stage. Thirteen microsatellite loci were used to estimate the influence of genome-wide relatedness between parents on offspring survivorship and MHC genotypes were determined by sequencing part of the class IIβ gene. Our results revealed no significant relationship between early offspring survivorship and genome-wide relatedness, predicted MHC heterozygosity, or MHC allelic similarity. Overall, our data are consistent with the contention that excess MHC heterozygosity in Atlantic salmon juveniles is due to sexual selection as well as differential survival of offspring due to MHC genotype.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号