首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8174篇
  免费   733篇
  国内免费   619篇
  9526篇
  2024年   20篇
  2023年   122篇
  2022年   290篇
  2021年   472篇
  2020年   321篇
  2019年   359篇
  2018年   335篇
  2017年   247篇
  2016年   400篇
  2015年   521篇
  2014年   665篇
  2013年   615篇
  2012年   744篇
  2011年   623篇
  2010年   437篇
  2009年   342篇
  2008年   429篇
  2007年   408篇
  2006年   301篇
  2005年   263篇
  2004年   208篇
  2003年   196篇
  2002年   144篇
  2001年   145篇
  2000年   134篇
  1999年   151篇
  1998年   91篇
  1997年   77篇
  1996年   67篇
  1995年   48篇
  1994年   56篇
  1993年   31篇
  1992年   49篇
  1991年   39篇
  1990年   23篇
  1989年   31篇
  1988年   22篇
  1987年   29篇
  1986年   13篇
  1985年   20篇
  1984年   12篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
  1965年   1篇
排序方式: 共有9526条查询结果,搜索用时 0 毫秒
101.
102.
103.
104.
Inhibitors based on a benzo-fused spirocyclic oxazepine scaffold were discovered for stearoyl-coenzyme A (CoA) desaturase 1 (SCD1) and subsequently optimized to potent compounds with favorable pharmacokinetic profiles and in vivo efficacy in reducing the desaturation index in a mouse model. Initial optimization revealed potency preferences for the oxazepine core and benzylic positions, while substituents on the piperidine portions were more tolerant and allowed for tuning of potency and PK properties. After preparation and testing of a range of functional groups on the piperidine nitrogen, three classes of analogs were identified with single digit nanomolar potency: glycine amides, heterocycle-linked amides, and thiazoles. Responding to concerns about target localization and potential mechanism-based side effects, an initial effort was also made to improve liver concentration in an available rat PK model. An advanced compound 17m with a 5-carboxy-2-thiazole substructure appended to the spirocyclic piperidine scaffold was developed which satisfied the in vitro and in vivo requirements for more detailed studies.  相似文献   
105.
The apicomplexan parasite Toxoplasma gondii, the causative agent of toxoplasmosis, is an important human pathogen. 1-Deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) in the non-mevalonate isoprene biosynthesis pathway is essential to the organism and therefore a target for developing anti-toxoplasmosis drugs. In order to find potent inhibitors, we expressed and purified recombinant T. gondii DXR (TgDXR). Biochemical properties of this enzyme were characterized and an enzyme activity/inhibition assay was developed. A collection of 11 compounds with a broad structural diversity were tested against TgDXR and several potent inhibitors were identified with Ki values as low as 48 nM. Analysis of the results as well as those of Escherichia coli and Plasmodium falciparum DXR enzymes revealed a different structure–activity relationship profile for the inhibition of TgDXR.  相似文献   
106.
Parasympathetic tone is a dominant neural regulator for basal heart rate. Glutamate transporters (EAAT) via their glutamate uptake functions regulate glutamate neurotransmission in the central nervous system. We showed that EAAT type 3 (EAAT3) knockout mice had a slower heart rate than wild-type mice when they were anesthetized. We design this study to determine whether non-anesthetized EAAT3 knockout mice have a slower heart rate and, if so, what may be the mechanism for this effect. Young adult EAAT3 knockout mice had slower heart rates than those of their littermate wild-type mice no matter whether they were awake or anesthetized. This difference was abolished by atropine, a parasympatholytic drug. Carbamylcholine chloride, a parasympathomimetic drug, equally effectively reduced the heart rates of wild-type and EAAT3 knockout mice. Positive immunostaining for EAAT3 was found in the area of nuclei deriving fibers for vagus nerve. There was no positive staining for the EAATs in the sinoatrial node. These results suggest that EAAT3 knockout mice have a slower heart rate at rest. This effect may be caused by an increased parasympathetic tone possibly due to increased glutamate neurotransmission in the central nervous system. These findings indicate that regulation of heart rate, a vital sign, is one of the EAAT biological functions.  相似文献   
107.
Gloverins are basic, glycine-rich and heat-stable antibacterial proteins (~14- kDa) in lepidopteran insects with activity against Escherichia coli, Gram-positive bacteria, fungi and a virus. Hyalophora gloveri gloverin adopts a random coil structure in aqueous solution but has α-helical structure in membrane-like environment, and it may interact with the lipid A moiety of lipopolysaccharide (LPS). Manduca sexta gloverin binds to the O-specific antigen and outer core carbohydrate of LPS. In the silkworm Bombyx mori, there are four gloverins with slightly acidic to neutral isoelectric points. In this study, we investigate structural and binding properties and activities of B. mori gloverins (BmGlvs), as well as correlations between structure, binding property and activity. Recombinant BmGlv1-4 were expressed in bacteria and purified. Circular dichroism (CD) spectra showed that all four BmGlvs mainly adopted random coli structure (>50%) in aqueous solution in regardless of pH, but contained α-helical structure in the presence of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), smooth and rough mutants (Ra, Rc and Re) of LPS and lipid A. Plate ELISA assay showed that BmGlvs at pH 5.0 bound to rough mutants of LPS and lipid A but not to smooth LPS. Antibacterial activity assay showed that positively charged BmGlvs (at pH 5.0) were active against E. coli mutant strains containing rough LPS but inactive against E. coli with smooth LPS. Our results suggest that binding to rough LPS is the prerequisite for the activity of BmGlvs against E. coli.  相似文献   
108.
Certain bacterial pathogens possess a repertoire of carbohydrate processing enzymes that process host N-linked glycans and many of these enzymes are required for full virulence of harmful human pathogens such as Clostridium perfringens and Streptococcus pneumoniae. One bacterial carbohydrate processing enzyme that has been studied is the pneumococcal virulence factor SpGH125 from S. pneumoniae and its homologue, CpGH125, from C. perfringens. These exo-α-1,6-mannosidases from glycoside hydrolase family 125 show poor activity toward aryl α-mannopyranosides. To circumvent this problem, we describe a convenient synthesis of the fluorogenic disaccharide substrate 4-methylumbelliferone α-d-mannopyranosyl-(1→6)-β-d-mannopyranoside. We show this substrate can be used in a coupled fluorescent assay by using β-mannosidases from either Cellulomonas fimi or Helix pomatia as the coupling enzyme. We find that this disaccharide substrate is processed much more efficiently than aryl α-mannopyranosides by CpGH125, most likely because inclusion of the second mannose residue makes this substrate more like the natural host glycan substrates of this enzyme, which enables it to bind better. Using this sensitive coupled assay, the detailed characterization of these metal-independent exo-α-mannosidases GH125 enzymes should be possible, as should screening chemical libraries for inhibitors of these virulence factors.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号