首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   4篇
  国内免费   1篇
  79篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   4篇
  2011年   4篇
  2010年   5篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   8篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1975年   1篇
排序方式: 共有79条查询结果,搜索用时 12 毫秒
1.
The question of virginity testing in Turkey   总被引:2,自引:0,他引:2  
Pelin SS 《Bioethics》1999,13(3-4):256-261
Pre-marital sex for a woman is regarded as wrong in my country. As a result, it is socially forbidden for a woman to engage in this act. In order to present a woman as a virgin on her marriage day, she is subjected to pressure, and put under control both by her family and societal norms. However, a man is free and never made to suffer any of the above. A woman found to be a virgin on her first night of marriage is seen as a normal person while one suspected to have lost her virginity is made to undergo a series of medical examinations to bring clarity to her situation.  相似文献   
2.
3.
The production of reactive oxidants has been implicated in the pathology of a number of inflammatory conditions, including inflamed arthritic joints. Many assays for the detection of these oxidants in diseased states have been described, but there are a number of potential pitfalls in both experimental design and the interpretation of results obtained with these techniques. Here, we describe a number of commonly used assays to detect the production of reactive oxidants and critically discuss their usefulness and limitations. We focus on the role of xanthine oxidase in reactive oxidant production in inflammatory disease.  相似文献   
4.
Hyperglycemia-induced oxidative stress leads to diabetes-associated damage to the microvasculature of the brain. Pericytes in close proximity to endothelial cells in the brain microvessels are vital to the integrity of the blood–brain barrier and are especially susceptible to oxidative stress. According to our recently published results, streptozotocin-diabetic mouse brain exhibits oxidative stress and loose pericytes by twelve weeks of diabetes, and cerebral pericytes cultured in high glucose media suffer intracellular oxidative stress and apoptosis. Oxidative stress in diabetes is hypothesized to be caused by reactive oxygen species (ROS) produced during hyperglycemia-induced enhanced oxidative metabolism of glucose (respiration). To test this hypothesis, we investigated the effect of high glucose on respiration rate and ROS production in mouse cerebral pericytes. Previously, we showed that pharmacological inhibition of mitochondrial carbonic anhydrases protects the brain from oxidative stress and pericyte loss. The high glucose-induced intracellular oxidative stress and apoptosis of pericytes in culture were also reversed by inhibition of mitochondrial carbonic anhydrases. Therefore, we extended our current study to determine the effect of these inhibitors on high glucose-induced increases in pericyte respiration and ROS. We now report that both the respiration and ROS are significantly increased in pericytes challenged with high glucose. Furthermore, inhibition of mitochondrial carbonic anhydrases significantly slowed down both the rate of respiration and ROS production. These data provide new evidence that pharmacological inhibitors of mitochondrial carbonic anhydrases, already in clinical use, may prove beneficial in protecting the brain from oxidative stress caused by ROS produced as a consequence of hyperglycemia-induced enhanced respiration.  相似文献   
5.
6.
7.
8.
Idiopathic nephrotic syndrome (INS) is a genetically heterogeneous group of disorders characterized by proteinuria, hypoalbuminemia, and edema. Because it typically results in end-stage kidney disease, the steroid-resistant subtype (SRNS) of INS is especially important when it occurs in children. The present study included 29 affected and 22 normal individuals from 17 SRNS families; genome-wide analysis was performed with Affymetrix 250K SNP arrays followed by homozygosity mapping. A large homozygous stretch on chromosomal region 12p12 was identified in one consanguineous family with two affected siblings. Direct sequencing of protein tyrosine phosphatase receptor type O (PTPRO; also known as glomerular epithelial protein-1 [GLEPP1]) showed homozygous c.2627+1G>T donor splice-site mutation. This mutation causes skipping of the evolutionarily conserved exon 16 (p.Glu854_Trp876del) at the RNA level. Immunohistochemistry with GLEPP1 antibody showed a similar staining pattern in the podocytes of the diseased and control kidney tissues. We used a highly polymorphic intragenic DNA marker-D12S1303-to search for homozygosity in 120 Turkish and 13 non-Turkish individuals in the PodoNet registry. This analysis yielded 17 candidate families, and a distinct homozygous c.2745+1G>A donor splice-site mutation in PTPRO was further identified via DNA sequencing in a second Turkish family. This mutation causes skipping of exon 19, and this introduces a premature stop codon at the very beginning of exon 20 (p.Asn888Lysfs*3) and causes degradation of mRNA via nonsense-mediated decay. Immunohistochemical analysis showed complete absence of immunoreactive PTPRO. Ultrastructural alterations, such as diffuse foot process fusion and extensive microvillus transformation of podocytes, were observed via electron microscopy in both families. The present study introduces mutations in PTPRO as another cause of autosomal-recessive nephrotic syndrome.  相似文献   
9.
Testis-specific expression of tandemly repeated Stellate genes, located in eu- and heterochromatin regions of the X chromosome of Drosophila melanogaster, is suppressed by homologous Suppressor of Stellate repeats located on the Y chromosome. Using transgenic lines, we have demonstrated that three Su(Ste) copies failed to change the expression of the reporter construction carrying the bacterial beta-galactosidase gene under control of the Stellate gene regulatory sequence. Possible mechanisms of the Su(Ste) repeat suppressor activity are discussed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号