首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   16篇
  182篇
  2022年   1篇
  2019年   1篇
  2016年   1篇
  2015年   4篇
  2014年   8篇
  2013年   7篇
  2012年   18篇
  2011年   9篇
  2010年   17篇
  2009年   12篇
  2008年   13篇
  2007年   9篇
  2006年   5篇
  2005年   7篇
  2004年   4篇
  2003年   7篇
  2002年   3篇
  2001年   3篇
  2000年   8篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
  1972年   3篇
  1969年   1篇
  1967年   1篇
  1962年   1篇
排序方式: 共有182条查询结果,搜索用时 15 毫秒
101.

Background

Idiopathic granulomatous mastitis is an uncommon, benign entity with a diagnosis of exclusion. The typical clinical presentation of idiopathic granulomatous mastitis often mimics infection or malignancy. As a result, histopathological confirmation of idiopathic granulomatous mastitis combined with exclusion of infection, malignancy and other causes of granulomatous disease is absolutely necessary.

Case Presentation

We present a case of a young woman with idiopathic granulomatous mastitis, initially mistaken for mastitis as well as breast carcinoma, and successfully treated with a course of corticosteroids.

Conclusion

There is no clear clinical consensus regarding the ideal therapeutic management of idiopathic granulomatous mastitis. Treatment options include expectant management with spontaneous remission, corticosteroid therapy, immunosuppressive agents and extensive surgery for refractory cases.
  相似文献   
102.
Tuli V  Moyed HS 《Plant physiology》1967,42(3):425-430
Extracts of pea seedlings (Pisum sativum, variety Alaska) oxidize indole-3-acetic acid to a bacteriostatic compound which has been identified as 3-hydroxymethyloxindole. At physiological pH this compound is readily dehydrated to 3-methyleneoxindole, another bacteriostatic agent. The extracts of pea seedlings also contain a reduced triphosphopyridine nucleotide-linked enzyme which reduces 3-methyleneoxindole to 3-methyloxindole, a non-toxic compound.

These enzymatic reactions also take place in intact seedlings; thus, a pathway of indole-3-acetic acid degradation via oxindoles appears to be pertinent to plant metabolism.

The significance of such metabolism lies in the fact that a key intermediate of this pathway, 3-methyleneoxindole, is a sulfhydryl reagent capable of profound effects on metabolism and growth.

  相似文献   
103.
Cordycepin: A bioactive metabolite with therapeutic potential   总被引:1,自引:0,他引:1  
Cytotoxic nucleoside analogues were the first chemotherapeutic agents for cancer treatment. Cordycepin, an active ingredient of the insect fungus Cordyceps militaris, is a category of compounds that exhibit significant therapeutic potential. Cordycepin has many intracellular targets, including nucleic acid (DNA/RNA), apoptosis and cell cycle, etc. Investigations of the mechanism of anti-cancer drugs have yielded important information for the design of novel drug targets in order to enhance anti-tumor activity with less toxicity to patients. This extensive review covers various molecular aspects of cordycepin interactions with its recognized cellular targets and proposes the development of novel therapeutic strategies for cancer treatment.  相似文献   
104.
105.
Plastid transformation vectors are used for high-level expression of industrially important recombinant proteins in plants. In the present study, new vectors for plastid transformation were developed. One of these vectors targets transgenes at a new site in the chloroplast genome. Intergenic regions of trnfM-trnG, ndhB-trnL and rrn16-trnV were selected as sites for transgene insertion. Tobacco chloroplast was successfully transformed with designed vectors, and the transplastomic plants accumulated recombinant protein as high as 5–6% of total soluble protein which remained localized in the chloroplasts. Although the vectors were designed using the plastid genome of Nicotiana tabacum, flanking regions used in two vectors show a high level of homology with chloroplast genomes of other plant species, thus it might be possible to use them for the transformation of a wider range of plant species.  相似文献   
106.
Arsenic hazards: strategies for tolerance and remediation by plants   总被引:7,自引:0,他引:7  
Arsenic toxicity has become a global concern owing to the ever-increasing contamination of water, soil and crops in many regions of the world. To limit the detrimental impact of arsenic compounds, efficient strategies such as phytoremediation are required. Suitable plants include arsenic hyperaccumulating ferns and aquatic plants that are capable of completing their life cycle in the presence of high levels of arsenic through the concerted action of arsenate reduction to arsenite, arsenite complexation, and vacuolar compartmentalization of complexed or inorganic arsenic. Tolerance can also be conferred by lowering arsenic uptake by suppression of phosphate transport activity, a major pathway for arsenate entry. In many unicellular organisms, arsenic tolerance is based on the active removal of cytosolic arsenite while limiting the uptake of arsenate. Recent molecular studies have revealed many of the gene products involved in these processes, providing the tools to improve crop species and to optimize phytoremediation; however, so far only single genes have been manipulated, which has limited progress. We will discuss recent advances and their potential applications, particularly in the context of multigenic engineering approaches.  相似文献   
107.
108.
Epithelial sodium channel (ENaC) in the kidneys is critical for Na+ balance, extracellular volume, and blood pressure. Altered ENaC function is associated with respiratory disorders, pseudohypoaldosteronism type 1, and Liddle syndrome. ENaC is known to interact with components of the cytoskeleton, but the functional roles remain largely unclear. Here, we examined the interaction between ENaC and filamins, important actin filament components. We first discovered by yeast two-hybrid screening that the C termini of ENaC α and β subunits bind filamin A, B, and C, and we then confirmed the binding by in vitro biochemical assays. We demonstrated by co-immunoprecipitation that ENaC, either overexpressed in HEK, HeLa, and melanoma A7 cells or natively expressed in LLC-PK1 and IMCD cells, is in the same complex with native filamin. Furthermore, the biotinylation and co-immunoprecipitation combined assays showed the ENaC-filamin interaction on the cell surface. Using Xenopus oocyte expression and two-electrode voltage clamp electrophysiology, we found that co-expression of an ENaC-binding domain of filamin substantially reduces ENaC channel function. Western blot and immunohistochemistry experiments revealed that the filamin A C terminus (FLNAC) modestly reduces the expression of the ENaC α subunit in oocytes and A7 cells. After normalizing the current by plasma membrane expression, we found that FLNAC results in ∼50% reduction in the ENaC channel activity. The inhibitory effect of FLNAC was confirmed by lipid bilayer electrophysiology experiments using purified ENaC and FLNAC proteins, which showed that FLNAC substantially reduces ENaC single channel open probability. Taken together, our study demonstrated that filamin reduces ENaC channel function through direct interaction on the cell surface.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号