首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   8篇
  2023年   3篇
  2022年   1篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   5篇
  2009年   4篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
排序方式: 共有50条查询结果,搜索用时 265 毫秒
11.
Ecosystems - Climate change and the related increases in evapotranspiration threaten to make northern peatlands drier. The carbon sink function in peatlands is based on the delicate balance between...  相似文献   
12.
Wetlands are the largest natural source of methane (CH4) to the atmosphere. The eddy covariance method provides robust measurements of net ecosystem exchange of CH4, but interpreting its spatiotemporal variations is challenging due to the co-occurrence of CH4 production, oxidation, and transport dynamics. Here, we estimate these three processes using a data-model fusion approach across 25 wetlands in temperate, boreal, and Arctic regions. Our data-constrained model—iPEACE—reasonably reproduced CH4 emissions at 19 of the 25 sites with normalized root mean square error of 0.59, correlation coefficient of 0.82, and normalized standard deviation of 0.87. Among the three processes, CH4 production appeared to be the most important process, followed by oxidation in explaining inter-site variations in CH4 emissions. Based on a sensitivity analysis, CH4 emissions were generally more sensitive to decreased water table than to increased gross primary productivity or soil temperature. For periods with leaf area index (LAI) of ≥20% of its annual peak, plant-mediated transport appeared to be the major pathway for CH4 transport. Contributions from ebullition and diffusion were relatively high during low LAI (<20%) periods. The lag time between CH4 production and CH4 emissions tended to be short in fen sites (3 ± 2 days) and long in bog sites (13 ± 10 days). Based on a principal component analysis, we found that parameters for CH4 production, plant-mediated transport, and diffusion through water explained 77% of the variance in the parameters across the 19 sites, highlighting the importance of these parameters for predicting wetland CH4 emissions across biomes. These processes and associated parameters for CH4 emissions among and within the wetlands provide useful insights for interpreting observed net CH4 fluxes, estimating sensitivities to biophysical variables, and modeling global CH4 fluxes.  相似文献   
13.
Climate warming is leading to permafrost thaw in northern peatlands, and current predictions suggest that thawing will drive greater surface wetness and an increase in methane emissions. Hydrology largely drives peatland vegetation composition, which is a key element in peatland functioning and thus in carbon dynamics. These processes are expected to change. Peatland carbon accumulation is determined by the balance between plant production and peat decomposition. But both processes are expected to accelerate in northern peatlands due to warming, leading to uncertainty in future peatland carbon budgets. Here, we compile a dataset of vegetation changes and apparent carbon accumulation data reconstructed from 33 peat cores collected from 16 sub-arctic peatlands in Fennoscandia and European Russia. The data cover the past two millennia that has undergone prominent changes in climate and a notable increase in annual temperatures toward present times. We show a pattern where European sub-Arctic peatland microhabitats have undergone a habitat change where currently drier habitats dominated by Sphagnum mosses replaced wetter sedge-dominated vegetation and these new habitats have remained relatively stable over the recent decades. Our results suggest an alternative future pathway where sub-arctic peatlands may at least partly sustain dry vegetation and enhance the carbon sink capacity of northern peatlands.  相似文献   
14.
15.
Enteroaggregative Escherichia coli (EAEC) is a leading cause of acute and persistent diarrhea worldwide. A recently emerged Shiga-toxin-producing strain of EAEC resulted in significant mortality and morbidity due to progressive development of hemolytic-uremic syndrome. The attachment of EAEC to the human intestinal mucosa is mediated by aggregative adherence fimbria (AAF). Using X-ray crystallography and NMR structures, we present new atomic resolution insight into the structure of AAF variant I from the strain that caused the deadly outbreak in Germany in 2011, and AAF variant II from archetype strain 042, and propose a mechanism for AAF-mediated adhesion and biofilm formation. Our work shows that major subunits of AAF assemble into linear polymers by donor strand complementation where a single minor subunit is inserted at the tip of the polymer by accepting the donor strand from the terminal major subunit. Whereas the minor subunits of AAF have a distinct conserved structure, AAF major subunits display large structural differences, affecting the overall pilus architecture. These structures suggest a mechanism for AAF-mediated adhesion and biofilm formation. Binding experiments using wild type and mutant subunits (NMR and SPR) and bacteria (ELISA) revealed that despite the structural differences AAF recognize a common receptor, fibronectin, by employing clusters of basic residues at the junction between subunits in the pilus. We show that AAF-fibronectin attachment is based primarily on electrostatic interactions, a mechanism not reported previously for bacterial adhesion to biotic surfaces.  相似文献   
16.
Peat accumulating mires are important sources of the greenhouse gas methane. Methane emissions and methanogenic Archaea communities have been shown to differ between fens and bogs, implying that mire succession includes an ecological succession in methanogen communities. We investigated methane production and the methanogen communities along a chronosequence of mires (ca. 100-2,500 years), which consisted of five sites (1-5) located on the land-uplift coast of the Gulf of Bothnia. Methane production was measured in a laboratory incubation experiment. Methanogen communities were determined by amplification of a methyl coenzyme M-reductase (mcr) gene marker and analyzed by terminal-restriction fragment length polymorphism. The terminal-restriction fragment length polymorphism fingerprinting resulted in 15 terminal restriction fragments. The ordination configuration of the terminal restriction fragments data, using nonmetric multidimensional scaling, showed a clear gradient in the methanogen community structure along the mire chronosequence. In addition, fingerprint patterns of samples from the water table level and 40 cm below differed from one another in the bog site (site 5). Methane production was negligible in the three youngest fen sites (sites 1-3) and showed the highest rates in the oligotrophic fen site (site 4). Successful PCR amplification using mcr gene primers revealed the presence of a methanogen community in all five sites along the study transect.  相似文献   
17.
nsP3 is one of the four RNA replicase subunits encoded by alphaviruses. The specific essential functions of nsP3 remain unknown, but it is known to be phosphorylated on serine and threonine residues. Here we have completed mapping of the individual phosphorylation sites on Semliki Forest virus nsP3 (482 amino acids) by point mutational analysis of threonine residues. This showed that threonines 344 and 345 represented the major threonine phosphorylation sites in nsP3. Experiments with deletion variants suggested that nsP3 itself had no kinase activity; instead, it was likely to be phosphorylated by multiple cellular kinases. Phosphorylation was not necessary for the peripheral membrane association of nsP3, which was mediated by the N-terminal region preceding the phosphorylation sites. Two deletion variants of nsP3 with either reduced or undetectable phosphorylation were studied in the context of virus infection. Cells infected with mutant viruses produced close to wild type levels of infectious virions; however, the rate of viral RNA synthesis was significantly reduced in the mutants. A virus totally defective in nsP3 phosphorylation and exhibiting a decreased rate of RNA synthesis also exhibited greatly reduced pathogenicity in mice.  相似文献   
18.
19.
Ecosystems - We quantified the role of spatially varying vegetation composition in seasonal and interannual changes in a boreal bog’s CO2 uptake. We divided the spatially heterogeneous site...  相似文献   
20.
Northern boreal peatlands are important ecosystems in modulating global biogeochemical cycles, yet their biological communities and related carbon dynamics are highly sensitive to changes in climate. Despite this, the strength and recent direction of these feedbacks are still unclear. The response of boreal peatlands to climate warming has received relatively little attention compared with other northern peatland types, despite forming a large northern hemisphere‐wide ecosystem. Here, we studied the response of two ombrotrophic boreal peatlands to climate variability over the last c. 200 years for which local meteorological data are available. We used remains from plants and testate amoebae to study historical changes in peatland biological communities. These data were supplemented by peat property (bulk density, carbon and nitrogen content), 14C, 210Pb and 137Cs analyses and were used to infer changes in peatland hydrology and carbon dynamics. In total, six peat cores, three per study site, were studied that represent different microhabitats: low hummock (LH), high lawn and low lawn. The data show a consistent drying trend over recent centuries, represented mainly as a change from wet habitat Sphagnum spp. to dry habitat S. fuscum. Summer temperature and precipitation appeared to be important drivers shaping peatland community and surface moisture conditions. Data from the driest microhabitat studied, LH, revealed a clear and strong negative linear correlation (R2 = .5031; p < .001) between carbon accumulation rate and peat surface moisture conditions: under dry conditions, less carbon was accumulated. This suggests that at the dry end of the moisture gradient, availability of water regulates carbon accumulation. It can be further linked to the decreased abundance of mixotrophic testate amoebae under drier conditions (R2 = .4207; p < .001). Our study implies that if effective precipitation decreases in the future, the carbon uptake capacity of boreal bogs may be threatened.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号