首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5348篇
  免费   395篇
  国内免费   2篇
  5745篇
  2022年   29篇
  2021年   61篇
  2020年   29篇
  2019年   36篇
  2018年   91篇
  2017年   53篇
  2016年   81篇
  2015年   157篇
  2014年   167篇
  2013年   309篇
  2012年   282篇
  2011年   257篇
  2010年   180篇
  2009年   181篇
  2008年   255篇
  2007年   309篇
  2006年   315篇
  2005年   288篇
  2004年   281篇
  2003年   272篇
  2002年   299篇
  2001年   148篇
  2000年   161篇
  1999年   122篇
  1998年   80篇
  1997年   80篇
  1996年   65篇
  1995年   63篇
  1994年   52篇
  1993年   43篇
  1992年   98篇
  1991年   85篇
  1990年   74篇
  1989年   86篇
  1988年   82篇
  1987年   64篇
  1986年   47篇
  1985年   52篇
  1984年   43篇
  1983年   31篇
  1982年   29篇
  1981年   22篇
  1980年   20篇
  1979年   35篇
  1978年   25篇
  1975年   18篇
  1974年   28篇
  1973年   20篇
  1972年   18篇
  1971年   16篇
排序方式: 共有5745条查询结果,搜索用时 0 毫秒
91.
92.
The association and dissociation of DNA damage response (DDR) factors with damaged chromatin occurs dynamically, which is crucial for the activation of DDR signaling in a spatiotemporal manner. We previously showed that the TIP60 histone acetyltransferase complex acetylates histone H2AX, to facilitate H2AX exchange at sites of DNA damage. However, it remained unclear how the acetylation of histone H2AX by TIP60 is related to the DDR signaling. We found that the acetylation but not the phosphorylation of H2AX is essential for the turnover of NBS1 on damaged chromatin. The loss of H2AX acetylation at Lys 5 by TIP60 in cells disturbed the accumulation of NBS1 at sites of DNA damage. Although the phosphorylation of H2AX is also reportedly required for the retention of NBS1 at damage sites, our data indicated that the acetylation-dependent NBS1 turnover by TIP60 on damaged chromatin restricts the dispersal of NBS1 foci from the sites of DNA damage. These findings indicate the importance of the acetylation-dependent dynamic binding of NBS1 to damaged chromatin, created by histone H2AX exchange, for the proper accumulation of NBS1 at DNA damage sites.  相似文献   
93.
Cofilin is a widely distributed, pH-sensitive, actin-modulating protein with an apparent molecular mass of 21 kDa, which forms intranuclear and/or cytoplasmic actin/cofilin rods in cultured fibroblastic cells under specific conditions. In this study, a cDNA library from porcine brain mRNA was constructed, and full-length brain cofilin cDNA clones were isolated by screening with oligonucleotide probes. The deduced amino acid sequence of cofilin is 166 residues long and contains a sequence of Lys-Lys-Arg-Lys-Lys which is very similar to the nuclear transport signal sequence (Pro-Lys-Lys-Lys-Arg-Lys-Val) of SV40 large T antigen. The sequence may act as a signal capable of inducing nuclear accumulation of cofilin in cells exposed to heat shock or dimethyl sulfoxide. The cofilin sequence contains a hexapeptide (Asp-Ala-Ile-Lys-Lys-Lys) identical to the amino-terminal sequence (residues 2-7) of muscle and nonmuscle tropomyosin. Cofilin also has in the carboxyl-terminal portion a region homologous to the sequence shared by gelsolin, fragmin, and Acanthamoeba profilin. Furthermore, the overall amino acid sequence of cofilin shows weak homology with the rod portion of myosin and suggests a high alpha-helical content.  相似文献   
94.
Betaine aldehyde dehydrogenase (BADH; EC 1.2.1.8) is an important enzyme that catalyzes the last step in the synthesis of glycine betaine, a compatible solute accumulated by many plants under various abiotic stresses. In barley ( Hordeum vulgare L.), we reported previously the existence of two BADH genes ( BBD1 and BBD2 ) and their corresponding proteins, peroxisomal BADH (BBD1) and cytosolic BADH (BBD2). To investigate their enzymatic properties, we expressed them in Escherichia coli and purified both proteins. Enzymatic analysis indicated that the affinity of BBD2 for betaine aldehyde was reasonable as other plant BADHs, but BBD1 showed extremely low affinity for betaine aldehyde with apparent Km of 18.9 μ M and 19.9 m M , respectively. In addition, Vmax/Km with betaine aldehyde of BBD2 was about 2000-fold higher than that of BBD1, suggesting that BBD2 plays a main role in glycine betaine synthesis in barley plants. However, BBD1 catalyzed the oxidation of ω-aminoaldehydes such as 4-aminobutyraldehyde and 3-aminopropionaldehyde as efficiently as BBD2. We also found that both BBDs oxidized 4- N -trimethylaminobutyraldehyde and 3- N -trimethylaminopropionaldehyde.  相似文献   
95.
Scavenger receptors for oxidized and glycated proteins   总被引:16,自引:0,他引:16  
Horiuchi S  Sakamoto Y  Sakai M 《Amino acids》2003,25(3-4):283-292
Summary. Our present knowledge on chemically modified proteins and their receptor systems is originated from a proposal by Goldstein and Brown in 1979 for the receptor for acetylated LDL which is involved in foam cell formation, one of critical steps in atherogenesis. Subsequent extensive studies using oxidized LDL (OxLDL) as a representative ligand disclosed at least 11 different scavenger receptors which are collectively categorized as scavenger receptor family. Advanced glycation endproducts (AGE) and their receptor systems have been studied independently until recent findings that AGE-proteins are also recognized as active ligands by scavenger receptors including class A scavenger receptor (SR-A), class B scavenger receptors such as CD36 and SR-BI, type D scavenger receptor (LOX-1) and FEEL-1/FEEL-2. Three messages can be summarized from these experiments; (i) endocytic uptake of OxLDL and AGE-proteins by macrophages or macrophage-derived cells is mainly mediated by SR-A and CD36, which is an important step for foam cell formation in the early stage of atherosclerosis, (ii) selective uptake of cholesteryl esters of high density lipoprotein (HDL) mediated by SR-BI is inhibited by AGE-proteins, suggesting a potential pathological role of AGE in a HDL-mediated reverse cholesterol transport system, (iii) a novel scavenger receptor is involved in hepatic clearance of plasma OxLDL and AGE-proteins.  相似文献   
96.
The sesquiterpene lactone koningic acid (heptelidic acid) irreversibly inactivated glyceraldehyde-3-phosphate dehydrogenase [D-glyceraldehyde 3-phosphate: NAD+ oxidoreductase (phosphorylating)] (EC 1.2.1.12) (GAPDH) and thus inhibits glycolysis. The koningic-acid-producing strain of Trichoderma koningii M3947 was shown to contain the koningic-acid-resistant GAPDH isozyme (GAPDH I) under conditions of koningic acid production. In peptone-rich medium, however, no koningic acid production was observed, and the koningic-acid-sensitive GAPDH isozyme (GAPDH II), in addition to the resistant enzyme, was produced. Both enzymes were tetramer with a molecular mass of 152 kDa (4 x 38 kDa) and lost enzyme activity when two of the four cysteine residues reacted with koningic acid. The apparent Km values of GAPDH I and II for glyceraldehyde 3-phosphate were 0.54 mM and 0.33 mM, respectively. The former isozyme was inhibited 50% by 1 mM koningic acid but not affected at 0.1 mM, while the latter isozyme was inhibited 50% at 0.01 mM. The immunochemical properties and partial amino acid sequences suggested that the two isozymes have different molecular structures. These results suggest that GAPDH I is responsible for the glycolysis in T. koningii when koningic acid is produced.  相似文献   
97.
Shinohara M  Sakai K  Shinohara A  Bishop DK 《Genetics》2003,163(4):1273-1286
Two RecA-like recombinases, Rad51 and Dmc1, function together during double-strand break (DSB)-mediated meiotic recombination to promote homologous strand invasion in the budding yeast Saccharomyces cerevisiae. Two partially redundant proteins, Rad54 and Tid1/Rdh54, act as recombinase accessory factors. Here, tetrad analysis shows that mutants lacking Tid1 form four-viable-spore tetrads with levels of interhomolog crossover (CO) and noncrossover recombination similar to, or slightly greater than, those in wild type. Importantly, tid1 mutants show a marked defect in crossover interference, a mechanism that distributes crossover events nonrandomly along chromosomes during meiosis. Previous work showed that dmc1Delta mutants are strongly defective in strand invasion and meiotic progression and that these defects can be partially suppressed by increasing the copy number of RAD54. Tetrad analysis is used to show that meiotic recombination in RAD54-suppressed dmc1Delta cells is similar to that in tid1; the frequency of COs and gene conversions is near normal, but crossover interference is defective. These results support the proposal that crossover interference acts at the strand invasion stage of recombination.  相似文献   
98.
Primary neuroendocrine neoplasm of the liver is extremely rare in both humans and non‐human primates. The present report describes the clinical and pathological findings of an aged Japanese macaque (Macaca fuscata) with hepatic neuroendocrine carcinoma. To our knowledge, this is the first report of hepatic neuroendocrine neoplasm in macaques.  相似文献   
99.
Microbial Production of Pectin from Citrus Peel   总被引:3,自引:0,他引:3       下载免费PDF全文
A new method for the production of pectin from citrus peel was developed. For this purpose, a microorganism which produces a protopectin-solubilizing enzyme was isolated and identified as a variety of Trichosporon penicillatum. The most suitable conditions for the pectin production were determined as follows. Citrus (Citrus unshiu) peel was suspended in water (1:2, wt/vol), the organism was added, and fermentation proceeded over 15 to 20 h at 30°C. During the fermentation, the pectin in the peel was extracted almost completely without macerating the peel. By this method, 20 to 25 g of pectin was obtained per kg of peel. The pectin obtained was special in that it contained neutral sugar at high levels, which was determined to have a molecular weight suitable for practical applications.  相似文献   
100.
1-Anilinonaphthalene-8-sulfonic acid (ANS) noncompetitively inhibited enzyme activity of glutathione S-transferase P for both glutathione and 1-chloro-2,4-dinitrobenzene (Ki = 30 microM). Dissociation constant for ANS.GST-P complex calculated from the binding study was 15 microM. From the similar values of the inhibition constant and the dissociation constant, it was concluded that specific ANS binding caused the loss of enzyme activity. In the protein structural analysis by circular dichroism, the secondary structures remarkably changed by ANS binding in accordance with the decrease of enzymatic activities. The conformational change of the protein and the decrease in enzymatic activity were reversed by dissociation of ANS. This fact strongly suggested that the enzymatic activity was regulated by a nonsubstrate hydrophobic ligand.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号