首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1836篇
  免费   77篇
  2022年   6篇
  2021年   16篇
  2020年   11篇
  2019年   18篇
  2018年   19篇
  2017年   26篇
  2016年   32篇
  2015年   58篇
  2014年   85篇
  2013年   90篇
  2012年   100篇
  2011年   123篇
  2010年   73篇
  2009年   77篇
  2008年   107篇
  2007年   107篇
  2006年   107篇
  2005年   121篇
  2004年   108篇
  2003年   109篇
  2002年   80篇
  2001年   38篇
  2000年   46篇
  1999年   32篇
  1998年   17篇
  1997年   30篇
  1996年   18篇
  1995年   22篇
  1994年   22篇
  1993年   21篇
  1992年   21篇
  1991年   19篇
  1990年   13篇
  1989年   16篇
  1988年   13篇
  1987年   9篇
  1986年   10篇
  1985年   11篇
  1984年   12篇
  1983年   3篇
  1982年   5篇
  1981年   9篇
  1979年   4篇
  1978年   4篇
  1976年   4篇
  1975年   5篇
  1974年   5篇
  1973年   6篇
  1968年   3篇
  1966年   5篇
排序方式: 共有1913条查询结果,搜索用时 31 毫秒
61.
Chicken cystatin (cC) mutant I66Q is located in the hydrophobic core of the protein and increases the propensity for amyloid formation. Here, we demonstrate that under physiological conditions, the replacement of Ile with the Gln in the I66Q mutant increases the susceptibility for the disulfide bond Cys71–Cys81 to be reduced when compared to the wild type (WT) cC. Molecular dynamics (MD) simulations under conditions favoring cC amyloid fibril formation are in agreement with the experimental results. MD simulations were also performed to investigate the impact of disrupting the Cys71–Cys81 disulfide bond on the conformational stability of cC at the atomic level, and highlighted major disruption to the cC appendant structure. Domain swapping and extensive unfolding has been proposed as one of the possible mechanisms initiating amyloid fibril formation by cystatin. Our in silico studies suggest that disulfide bond formation between residues Cys95 and Cys115 is necessary to maintain conformational stability of the I66Q mutant following breakage of the Cys71–Cys81 disulfide bridge. Subsequent breakage of disulfide bond Cys95–Cys115 resulted in large structural destabilization of the I66Q mutant, which increased the α–β interface distance and expanded the hydrophobic core. These experimental and computational studies provide molecular-level insight into the relationship between disulfide bond formation and progressive unfolding of amyloidogenic cC mutant I66Q.

An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:23  相似文献   
62.
Neurodegenerative diseases associated with the pathological aggregation of microtubule-associated protein Tau are classified as tauopathies. Alzheimer disease, the most common tauopathy, is characterized by neurofibrillary tangles that are mainly composed of abnormally phosphorylated Tau. Similar hyperphosphorylated Tau lesions are found in patients with frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) that is induced by mutations within the tau gene. To further understand the etiology of tauopathies, it will be important to elucidate the mechanism underlying Tau hyperphosphorylation. Tau phosphorylation occurs mainly at proline-directed Ser/Thr sites, which are targeted by protein kinases such as GSK3β and Cdk5. We reported previously that dephosphorylation of Tau at Cdk5-mediated sites was enhanced by Pin1, a peptidyl-prolyl isomerase that stimulates dephosphorylation at proline-directed sites by protein phosphatase 2A. Pin1 deficiency is suggested to cause Tau hyperphosphorylation in Alzheimer disease. Up to the present, Pin1 binding was only shown for two Tau phosphorylation sites (Thr-212 and Thr-231) despite the presence of many more hyperphosphorylated sites. Here, we analyzed the interaction of Pin1 with Tau phosphorylated by Cdk5-p25 using a GST pulldown assay and Biacore approach. We found that Pin1 binds and stimulates dephosphorylation of Tau at all Cdk5-mediated sites (Ser-202, Thr-205, Ser-235, and Ser-404). Furthermore, FTDP-17 mutant Tau (P301L or R406W) showed slightly weaker Pin1 binding than non-mutated Tau, suggesting that FTDP-17 mutations induce hyperphosphorylation by reducing the interaction between Pin1 and Tau. Together, these results indicate that Pin1 is generally involved in the regulation of Tau hyperphosphorylation and hence the etiology of tauopathies.  相似文献   
63.
We here describe a new Early Cretaceous (early Albian) eutherian mammal, Sasayamamylos kawaii gen. et sp. nov., from the ‘Lower Formation’ of the Sasayama Group, Hyogo Prefecture, Japan. Sasayamamylos kawaii is characterized by a robust dentary, a distinct angle on the ventral margin of the dentary at the posterior end of the mandibular symphysis, a lower dental formula of 3–4 : 1 : 4 : 3, a robust lower canine, a non-molariform lower ultimate premolar, and a secondarily reduced entoconid on the molars. To date, S. kawaii is the earliest known eutherian mammal possessing only four premolars, which demonstrates that the reduction in the premolar count in eutherians started in the late Early Cretaceous. The occurrence of S. kawaii implies that the relatively rapid diversification of eutherians in the mid-Cretaceous had already started by the early Albian.  相似文献   
64.
We report here that Tyrophagus similis and Tyrophagus putrescentiae (Astigmata: Acaridae) have the ability to biosynthesize linoleic acid [(9Z, 12Z)-9, 12-octadecadienoic acid] via a Δ12-desaturation step, although animals in general and vertebrates in particular appear to lack this ability. When the mites were fed on dried yeast enriched with d31-hexadecanoic acid (16:0), d27-octadecadienoic acid (18:2), produced from d31-hexadecanoic acid through elongation and desaturation reactions, was identified as a major fatty acid component of phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs) in the mites. The double bond position of d27-octadecadienoic acid (18:2) of PCs and PEs was determined to be 9 and 12, respectively by dimethyldisulfide (DMDS) derivatization. Furthermore, the GC/MS retention time of methyl 9, 12-octadecadienoate obtained from mite extracts agreed well with those of authentic linoleic acid methyl ester. It is still unclear whether the mites themselves or symbiotic microorganisms are responsible for inserting a double bond into the Δ12 position of octadecanoic acid. However, we present here the unique metabolism of fatty acids in the mites.  相似文献   
65.
Indoleamine 2,3-dioxygenase (IDO) plays a significant role in several disorders such as Alzheimer’s disease, age-related cataracts and tumors. A series of novel tryptoline derivatives were synthesized and evaluated for their inhibitory activity against IDO. Substituted tryptoline derivatives (11a, 11c, 11e, 12b and 12c) were demonstrated to be more potent than known inhibitor MTH-Trp. Suzuki–Miyaura cross-coupling reaction of 11ad with phenylboronic acid proceeded in high yields. In most cases, C5 and C6 substitutions on the corresponding indole ring were well tolerated. The tryptoline derivative 11c is a promising chemical lead for the discovery of novel IDO inhibitors.  相似文献   
66.
N-Acyl-d-amino acid amidohydrolases (d-aminoacylases) are often used as tools for the optical resolution of d-amino acids, which are important products with applications in industries related to medicine and cosmetics. For this study, genes encoding d-aminoacylase were cloned from the genomes of Streptomyces spp. using sequence-based screening. They were expressed by Escherichia coli and Streptomyces lividans. Almost all of the cell-free extracts exhibit hydrolytic activity toward N-acetyl-(Ac-)d-Phe (0.05–6.32 μmol min?1 mg?1) under conditions without CoCl2. Addition of 1 mM CoCl2 enhanced their activity. Among them, the highest activity was observed from cell-free extracts prepared from S. lividans that possess the d-aminoacylase gene of Streptomyces sp. 64E6 (specific activities were, respectively, 7.34 and 9.31 μmol min?1 mg?1 for N-Ac-d-Phe and N-Ac-d-Met hydrolysis). Furthermore, when using glycerol as a carbon source for cultivation, the recombinant enzyme from Streptomyces sp. 64E6 was produced in 4.2-fold greater quantities by S. lividans than when using glucose. d-Aminoacylase from Streptomyces sp. 64E6 showed optimum at pH 8.0–9.0. It was stable at pH 5.5–9.0 up to 30 °C. The enzyme hydrolyzed various N-acetyl-d-amino acids that have hydrophobic side chains. In addition, the activity toward N-chloroacetyl-d-Phe was 2.1-fold higher than that toward N-Ac-d-Phe, indicating that the structure of N-acylated portion of substrate altered the activity.  相似文献   
67.
Dimethylglycine oxidase was purified to homogeneity from the cell extract of Cylindrocarpon didymum M–1, aerobically grown in medium containing betaine as the carbon source. The molecular weight of the enzyme was estimated to be 170,000 by the gel filtration method and 180,000 by the sedimentation velocity method. The enzyme exhibited an absorption spectrum characteristic of a flavoprotein with absorption maxima at 277, 345 and 450 nm. The enzyme consisted of two identical subunits with a molecular weight of 82,000, and contained two mol of FAD per mol of enzyme. The flavin was shown to be covalently bound to the protein. The enzyme was inactivated by Ag+, Hg2+, Zn2+ and iodoacetate. The enzyme oxidized dimethylglycine but was inert toward choline, betaine, sarcosine and alkylamines. Km and Vmax values for dimethylglycine were 9.1 mm and 1.22 μmol/min/mg, respectively. The enzyme catalyzed the following reaction: Dimethylglycine+O2+H2O → sarcosine+formaldehyde+H2O2.  相似文献   
68.
A photodynamic agent was isolated from the liver of abalone, Haliotis discus hannai, and identified as pyropheophorbide a. This red fluorescent pigment was proved to induce photosensitization both in rats and cats by oral administration, and recognized as the sole photodynamic pigment in the liver.

The periodical examination on several kinds of herbivorous gastropods indicated that the liver becomes toxic only in spring.  相似文献   
69.
In ferns, intra-gametophytic selfing occurs as a mode of reproduction where two gametes from the same gametophyte form a completely homozygous sporophyte. Intra-gametophytic selfing is considered to be prevented by lethal or deleterious recessive genes in several diploid species. In order to investigate the modes and tempo of selection acting different developmental stages, doubled haploids obtained from intra-gametophytic selfing within isolated gametophytes of a putative F1 hybrid between Osmunda japonica and O. lancea were analyzed with EST_derived molecular markers, and the distribution pattern of transmission ratio distortion (TRD) along linkage map was clarified. As the results, the markers with skewness were clustered in two linkage groups. For the two highly distorted regions, gametophytes and F2 population were also examined. The markers skewed towards O. japonica on a linkage group (LG_2) showed skewness also in gametophytes, and the TRD was generated in the process of spore formation or growth of gametophytes. Also, selection appeared to be operating in the gametophytic stage. The markers on other linkage group (LG_11) showed highest skewness towards O. lancea in doubled haploids, and it was suggested that the segregation of LG_11 were influenced by zygotic lethality or genotypic evaluation and that some deleterious recessive genes exist in LG_11 and reduce the viability of homozygotes with O. japonica alleles. It is very likely that a region of LG_11were responsible for the low frequencies of intra-gametophytic selfing in O. japonica.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号