首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   411篇
  免费   34篇
  2022年   4篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   9篇
  2015年   11篇
  2014年   8篇
  2013年   22篇
  2012年   28篇
  2011年   33篇
  2010年   21篇
  2009年   26篇
  2008年   23篇
  2007年   28篇
  2006年   28篇
  2005年   29篇
  2004年   25篇
  2003年   25篇
  2002年   19篇
  2001年   6篇
  2000年   6篇
  1999年   5篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   8篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   6篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
  1969年   2篇
排序方式: 共有445条查询结果,搜索用时 0 毫秒
41.
In Xenopus oocytes, the spindle assembly checkpoint (SAC) kinase Bub1 is required for cytostatic factor (CSF)-induced metaphase arrest in meiosis II. To investigate whether matured mouse oocytes are kept in metaphase by a SAC-mediated inhibition of the anaphase-promoting complex/cyclosome (APC/C) complex, we injected a dominant-negative Bub1 mutant (Bub1dn) into mouse oocytes undergoing meiosis in vitro. Passage through meiosis I was accelerated, but even though the SAC was disrupted, injected oocytes still arrested at metaphase II. Bub1dn-injected oocytes released from CSF and treated with nocodazole to disrupt the second meiotic spindle proceeded into interphase, whereas noninjected control oocytes remained arrested at metaphase. Similar results were obtained using dominant-negative forms of Mad2 and BubR1, as well as checkpoint resistant dominant APC/C activating forms of Cdc20. Thus, SAC proteins are required for checkpoint functions in meiosis I and II, but, in contrast to frog eggs, the SAC is not required for establishing or maintaining the CSF arrest in mouse oocytes.  相似文献   
42.
Neutrophils have been implicated in the pathogenesis of many inflammatory lung diseases, including chronic obstructive pulmonary disease and asthma. With this study, we investigated how disruption of cAMP signaling impacts the function of neutrophil recruitment to the lung. Four genes code for type 4 phosphodiesterases (PDE4s), enzymes critical for regulation of cAMP levels and cell signaling. Ablation of two of these genes, PDE4B and PDE4D, but not PDE4A, has profound effects on neutrophil function. In a paradigm of mouse lung injury induced by endotoxin inhalation, the number of neutrophils recovered in the bronchoalveolar lavage was markedly decreased in PDE4D(-/-) and PDE4B(-/-) mice 4 and 24 h after exposure to LPS. Acute PDE4 inhibition with rolipram had additional inhibitory effects on neutrophil migration in PDE4B(-/-) and, to a lesser extent, PDE4D(-/-) mice. This decreased neutrophil recruitment occurred without major changes in chemokine accumulation in bronchoalveolar lavage, suggesting a dysfunction intrinsic to neutrophils. This hypothesis was confirmed by investigating the expression of adhesion molecules on the surface of neutrophils and chemotaxis in vitro. CD18 expression was decreased after ablation of both PDE4B and PDE4D, whereas CD11 expression was not significantly affected. Chemotaxis in response to KC and macrophage inflammatory protein-2 was markedly reduced in PDE4B(-/-) and PDE4D(-/-) neutrophils. The effect of PDE4 ablation on chemotaxis was comparable, but not additive, to the effects of acute PDE4 inhibition with rolipram. These data demonstrate that PDE4B and PDE4D play complementary, but not redundant, roles in the control of neutrophil function.  相似文献   
43.
44.
Although mechanical ventilation (MV) is an important supportive strategy for patients with acute respiratory distress syndrome, MV itself can cause a type of acute lung damage termed ventilator-induced lung injury (VILI). Because nitric oxide (NO) has been reported to play roles in the pathogenesis of acute lung injury, the present study explores the effects on VILI of NO derived from chronically overexpressed endothelial nitric oxide synthase (eNOS). Anesthetized eNOS-transgenic (Tg) and wild-type (WT) C57BL/6 mice were ventilated at high or low tidal volume (Vt; 20 or 7 ml/kg, respectively) for 4 h. After MV, lung damage, including neutrophil infiltration, water leakage, and cytokine concentration in bronchoalveolar lavage fluid (BALF) and plasma, was evaluated. Some mice were given N(omega)-nitro-L-arginine methyl ester (L-NAME), a potent NOS inhibitor, via drinking water (1 mg/ml) for 1 wk before MV. Histological analysis revealed that high Vt ventilation caused severe VILI, whereas low Vt ventilation caused minimal VILI. Under high Vt conditions, neutrophil infiltration and lung water content were significantly attenuated in eNOS-Tg mice compared with WT animals. The concentrations of macrophage inflammatory protein-2 in BALF and plasma, as well as plasma tumor necrosis factor-alpha and monocyte chemoattractant protein-1, also were decreased in eNOS-Tg mice. L-NAME abrogated the beneficial effect of eNOS overexpression. In conclusion, chronic eNOS overexpression may protect the lung from VILI by inhibiting the production of inflammatory chemokines and cytokines that are associated with neutrophil infiltration into the air space.  相似文献   
45.
The Epstein-Barr virus BMRF1 DNA polymerase processivity factor, which is essential for viral genome replication, exists mainly as a C-shaped head-to-head homodimer but partly forms a ring-shaped tetramer through tail-to-tail association. Based on its molecular structure, several BMRF1 mutant viruses were constructed to examine their influence on viral replication. The R256E virus, which has a severely impaired capacity for DNA binding and polymerase processivity, failed to form replication compartments, resulting in interference of viral replication, while the C95E mutation, which impairs head-to-head contact in vitro, unexpectedly hardly affected the viral replication. Also, surprisingly, replication of the C206E virus, which is expected to have impairment of tail-to-tail contact, was severely restricted, although the mutant protein possesses the same in vitro biochemical activities as the wild type. Since the tail-to-tail contact surface is smaller than that of the head-to-head contact area, its contribution to ring formation might be essential for viral replication.  相似文献   
46.
Chromosaponin I (CSI), a gamma-pyronyl-triterpenoid saponin isolated from pea and other leguminous plants, stimulates the growth of roots in a variety of plants. In the present work, we introduce CSI as a sugar taste substance for the blowfly, Phormia regina. The blowfly has taste chemosensilla on the labellum. The sensory receptor cells in the chemosensillum are highly specialized for the tastes of sugar, salt and water, respectively. Application of CSI induced the feeding response of blowflies including full proboscis extension. CSI also induced impulses of the sugar taste receptor cell in the LL-type sensillum. The optimum concentration of CSI in these responses was 0.1 mM which is much lower than that of sucrose. Based on the comparison of dose-response relationships, CSI is 100 times more effective than sucrose in stimulating the sugar taste receptor cells. CSI-induced impulses appeared after a significant latency compared with sucrose. As far as we know, this is the first report describing that a natural saponin induces sugar responses in insects. CSI is a unique saponin because of its bifunctional property in plants and insects.  相似文献   
47.
Bone homeostasis is regulated by mechanical stimulation (MS). The sensory mechanism of bone tissue for MS remains unknown in the maintenance of bone homeostasis. We aimed to investigate the sensory mechanism from osteoblasts to sensory neurons in a coculture system by MS of osteoblasts. Primary sensory neurons isolated from dorsal root ganglia (DRG) of neonatal, juvenile, and adult mice and osteoblasts isolated from calvaria of neonatal mice were cocultured for 24 h. The responses in DRG neurons elicited by MS of osteoblasts with a glass micropipette were detected by increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) with fluo 3-AM. In all developmental stages mice, [Ca(2+)](i)-increasing responses in osteoblasts were promptly elicited by MS. After a short delay, [Ca(2+)](i)-increasing responses were observed in neurites of DRG neurons. The osteoblastic response to second MS was largely attenuated by a stretch-activated Ca(2+) channel blocker, gadolinium. The increases of [Ca(2+)](i) in DRG neurons were abolished by a P2 receptor antagonist; suramin, a P2X receptor antagonist, pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate; and an ATP-hydrolyzing enzyme, apyrase. Satellite cells were found around DRG neurons in cocultured cells of only neonatal and juvenile mice. After satellite cells were removed, excessive abnormal responses to MS of osteoblasts were observed in neonatal neurites with unchanged osteoblast responses. The present study indicated that MS of bone tissue elicited afferent P2X receptor-mediated purinergic transmission to sensory neurons in all stages mice. This transmission is modulated by satellite cells, which may have protective actions on sensory neurons.  相似文献   
48.
49.
50.
Gibberellins (GAs) are tetracyclic, diterpenoid plant hormones, essential for many developmental processes in higher plants. Plants perceive GA through a nuclear-localized GA receptor, GA INSENSITIVE DWARF1 (GID1). From sequence similarity, it is suggested that GID1 evolved from a hormone-sensitive lipase (HSL), and recent x-ray crystallography of the GA-GID1 complex has given insights into how GID1 recognizes GA. Analyses of the GA signaling pathway in several plant species further suggest that the GID1-mediated GA signaling pathway emerged in the vascular plant lineage and since then regulation of GA recognition specificity seems to have been fine tuned to strictly regulate the on-off GA signal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号