首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   411篇
  免费   34篇
  445篇
  2022年   4篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   9篇
  2015年   11篇
  2014年   8篇
  2013年   22篇
  2012年   28篇
  2011年   33篇
  2010年   21篇
  2009年   26篇
  2008年   23篇
  2007年   28篇
  2006年   28篇
  2005年   29篇
  2004年   25篇
  2003年   25篇
  2002年   19篇
  2001年   6篇
  2000年   6篇
  1999年   5篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   8篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   6篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
  1969年   2篇
排序方式: 共有445条查询结果,搜索用时 15 毫秒
21.
Nakano M  Kakehi K  Tsai MH  Lee YC 《Glycobiology》2004,14(5):431-441
We analyzed carbohydrate chains of human, bovine, sheep, and rat alpha1-acid glycoprotein (AGP) and found that carbohydrate chains of AGP of different animals showed quite distinct variations. Human AGP is a highly negatively charged acidic glycoprotein (pKa = 2.6; isoelectic point = 2.7) with a molecular weight of approximately 37,000 when examined by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and contains di-, tri-, and tetraantennary carbohydrate chains. Some of the tri- and tetraantennary carbohydrate chains are substituted with a fucose residue (sialyl Lewis x type structure). In sheep AGP, mono- and disialo-diantennary carbohydrate chains were abundant. Tri- and tetrasialo-triantennary carbohydrate chains were also present as minor oligosaccharides, and some of the sialic acid residues were substituted with N-glycolylneuraminic acid. In rat AGP, very complex mixtures of disialo-carbohydrate chains were observed. Complexity of the disialo-oligosaccharides was due to the presence of N, O-acetylneuraminic acids. Triantennary carbohydrate chains carrying N,O-acetylneuraminic acid were also observed as minor component oligosaccharides. We found some novel carbohydrate chains containing both N-acetylneuraminic acid and N-glycolylneuraminic acid in bovine AGP. Interestingly, triantennary carbohydrate chains were hardly detected in bovine AGP, but diantennary carbohydrate chains with tri- or tetrasialyl residues were abundant. Furthermore the major sialic acid in these carbohydrate chains was N-glycolylneuraminic acid. It should be noted that these sialic acids are attached to multiple sites of the core oligosaccharide and are not present as disialyl groups.  相似文献   
22.
23.
Neutrophils have been implicated in the pathogenesis of many inflammatory lung diseases, including chronic obstructive pulmonary disease and asthma. With this study, we investigated how disruption of cAMP signaling impacts the function of neutrophil recruitment to the lung. Four genes code for type 4 phosphodiesterases (PDE4s), enzymes critical for regulation of cAMP levels and cell signaling. Ablation of two of these genes, PDE4B and PDE4D, but not PDE4A, has profound effects on neutrophil function. In a paradigm of mouse lung injury induced by endotoxin inhalation, the number of neutrophils recovered in the bronchoalveolar lavage was markedly decreased in PDE4D(-/-) and PDE4B(-/-) mice 4 and 24 h after exposure to LPS. Acute PDE4 inhibition with rolipram had additional inhibitory effects on neutrophil migration in PDE4B(-/-) and, to a lesser extent, PDE4D(-/-) mice. This decreased neutrophil recruitment occurred without major changes in chemokine accumulation in bronchoalveolar lavage, suggesting a dysfunction intrinsic to neutrophils. This hypothesis was confirmed by investigating the expression of adhesion molecules on the surface of neutrophils and chemotaxis in vitro. CD18 expression was decreased after ablation of both PDE4B and PDE4D, whereas CD11 expression was not significantly affected. Chemotaxis in response to KC and macrophage inflammatory protein-2 was markedly reduced in PDE4B(-/-) and PDE4D(-/-) neutrophils. The effect of PDE4 ablation on chemotaxis was comparable, but not additive, to the effects of acute PDE4 inhibition with rolipram. These data demonstrate that PDE4B and PDE4D play complementary, but not redundant, roles in the control of neutrophil function.  相似文献   
24.
The Epstein-Barr virus (EBV)-encoded replication proteins that account for the basic reactions at the replication fork are thought to be the EBV Pol holoenzyme, consisting of the BALF5 Pol catalytic and the BMRF1 Pol accessory subunits, the putative helicase-primase complex, comprising the BBLF4, BSLF1, and BBLF2/3 proteins, and the BALF2 single-stranded DNA-binding protein. Immunoprecipitation analyses using anti-BSLF1 or anti-BBLF2/3 protein-specific antibody with clarified lysates of B95-8 cells in a viral productive cycle suggested that the EBV Pol holoenzyme physically interacts with the BBLF4-BSLF1-BBLF2/3 complex to form a large complex. Although the complex was stable in 500 mM NaCl and 1% NP-40, the BALF5 protein became dissociated in the presence of 0.1% sodium dodecyl sulfate. Experiments using lysates from insect cells superinfected with combinations of recombinant baculoviruses capable of expressing each of viral replication proteins showed that not the BMRF1 Pol accessory subunit but rather the BALF5 Pol catalytic subunit directly interacts with the BBLF4-BSLF1-BBLF2/3 complex. Furthermore, double infection with pairs of recombinant viruses revealed that each component of the BBLF4-BSLF1-BBLF2/3 complex makes contact with the BALF5 Pol catalytic subunit. The interactions of the EBV DNA polymerase with the EBV putative helicase-primase complex warrant particular attention because they are thought to coordinate leading- and lagging-strand DNA synthesis at the replication fork.  相似文献   
25.
26.
Maltol (3-hydroxy-2-methyl-4-pyrone) produced reactive oxygen species as a complex with transition metals. Maltol/iron complex inactivated aconitase the most sensitive enzyme to oxidative stress. The inactivation of aconitase was iron-dependent, and prevented by TEMPOL, a scavenger of reactive oxygen species, suggesting that the maltol/iron-mediated generation of superoxide anion is responsible for the inactivation of aconitase. Addition of maltol effectively enhanced the ascorbate/copper-mediated formation of 8-hydroxy-2′-deoxyguanosine in DNA. Oxidation of ascorbic acid by CuSO4 was effectively stimulated by addition of maltol, and the enhanced oxidation rate was markedly inhibited by the addition of catalase and superoxide dismutase. These results suggest that maltol can stimulate the copper reduction coupled with the oxidation of ascorbate, resulting in the production of superoxide radical which in turn converts to hydrogen peroxide and hydroxyl radical. Cytotoxic effect of maltol can be explained by its prooxidant properties: maltol/transition metal complex generates reactive oxygen species causing the inactivation of aconitase and the production of hydroxyl radical causing the formation of DNA base adduct.  相似文献   
27.
28.
A large number of substrate proteins for tissue transglutaminase (TGase 2) have been identified in vivo and in vitro. Preference in primary sequence or secondary structure around the reactive glutamine residues in the substrate governs the reactivity for TGase 2. We established a screening system to identify preferable sequence as a glutamine-donor substrate using a phage-displayed peptide library. The results showed that several peptide sequences have higher reactivity and specificity to TGase 2 than those of preferable sequences previously reported. By analysis of the most reactive 12-amino acid sequence, T26 (HQSYVDPWMLDH), residues crucial to the enzymatic reaction were investigated. The following review summarizes the screening system and also the preference in substrate sequences that were obtained by this method and those previously reported.  相似文献   
29.
Penicillium strains (n=394) preserved at NBRC (the NITE Biological Resource Center) were compared as to groupings (11 species-clusters) based on phylogeny and the production of bioactive compounds. The strains in two clusters, of which P. chrysogenum and P. citrinum are representative, showed higher rates of positive strains with multi-biological activities.  相似文献   
30.
Ectopic gene expression, or the gain-of-function approach, has the advantage that once the function of a gene is known the gene can be transferred to many different plants by transformation. We previously reported a method, called FOX hunting, that involves ectopic expression of Arabidopsis full-length cDNAs in Arabidopsis to systematically generate gain-of-function mutants. This technology is most beneficial for generating a heterologous gene resource for analysis of useful plant gene functions. As an initial model we generated more than 23 000 independent Arabidopsis transgenic lines that expressed rice fl-cDNAs (Rice FOX Arabidopsis lines). The short generation time and rapid and efficient transformation frequency of Arabidopsis enabled the functions of the rice genes to be analyzed rapidly. We screened rice FOX Arabidopsis lines for alterations in morphology, photosynthesis, element accumulation, pigment accumulation, hormone profiles, secondary metabolites, pathogen resistance, salt tolerance, UV signaling, high light tolerance, and heat stress tolerance. Some of the mutant phenotypes displayed by rice FOX Arabidopsis lines resulted from the expression of rice genes that had no homologs in Arabidopsis . This result demonstrated that rice fl-cDNAs could be used to introduce new gene functions in Arabidopsis. Furthermore, these findings showed that rice gene function could be analyzed by employing Arabidopsis as a heterologous host. This technology provides a framework for the analysis of plant gene function in a heterologous host and of plant improvement by using heterologous gene resources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号