首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56252篇
  免费   4704篇
  国内免费   47篇
  61003篇
  2023年   201篇
  2022年   584篇
  2021年   1003篇
  2020年   556篇
  2019年   741篇
  2018年   1133篇
  2017年   889篇
  2016年   1566篇
  2015年   2585篇
  2014年   2875篇
  2013年   3368篇
  2012年   4343篇
  2011年   4154篇
  2010年   2637篇
  2009年   2319篇
  2008年   3337篇
  2007年   3100篇
  2006年   2833篇
  2005年   2558篇
  2004年   2502篇
  2003年   2226篇
  2002年   1897篇
  2001年   1645篇
  2000年   1536篇
  1999年   1218篇
  1998年   528篇
  1997年   468篇
  1996年   401篇
  1995年   393篇
  1994年   305篇
  1993年   298篇
  1992年   639篇
  1991年   515篇
  1990年   474篇
  1989年   479篇
  1988年   405篇
  1987年   390篇
  1986年   318篇
  1985年   329篇
  1984年   270篇
  1983年   224篇
  1982年   189篇
  1981年   162篇
  1980年   160篇
  1979年   220篇
  1978年   197篇
  1977年   179篇
  1976年   170篇
  1974年   196篇
  1972年   155篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Nutrient requirements by male and female insects are likely to differ, but relatively little is known regarding how sexes differ in their regulation of macronutrient acquisition. The present study reports the results from a laboratory experiment in which behavioural and physiological components of nutrient regulation were compared between male and female caterpillars of Spodoptera litura (Fabricius). When provided with choices between two nutritionally complementary foods (one is a protein-biased diet and the other a carbohydrate-biased diet), both males and females adjusted their food selection to defend an intake target. However, the composition of diet preferred by the two differed, with females selecting significantly more protein than males with no difference in carbohydrate intake between the two. When confined to single diets with varying mixtures of protein and carbohydrate [P:C ratios, expressed as the percentage of diet by dry mass: protein 42%:carbohydrate 0% (p42:c0), p35:c7, p28:c14, p21:c21, p14:c28, p7:c35], females consumed more macronutrients than did males across on all P:C diets except the extremely carbohydrate-biased diet (p7:c35). Under both choice and no-choice feeding condition, such sex differences in nutrient intake were not expressed until late in the feeding stage of the final stadium. Sexes also differed in post-ingestive utilization of ingested nutrients. Females utilized ingested protein for body growth with greater efficiency compared to males, presumably reflecting provisioning their adult needs for protein to develop eggs, whereas males were more efficient at depositing lipids from carbohydrate intake than females.  相似文献   
992.
To better understand the effects of local topography and climate on soil respiration, we conducted field measurements and soil incubation experiments to investigate various factors influencing spatial and temporal variations in soil respiration for six mixed‐hardwood forest slopes in the midst of the Korean Peninsula. Soil respiration and soil water content (SWC) were significantly greater (P=0.09 and 0.003, respectively) on north‐facing slopes compared to south‐facing slopes, while soil temperature was not significantly different between slopes (P>0.5). At all sites, soil temperature was the primary factor driving temporal variations in soil respiration (r2=0.84–0.96) followed by SWC, which accounted for 30% of soil respiration spatial and temporal variability. Results from both field measurements and incubation experiments indicate that variations in soil respiration due to aspect can be explained by a convex‐shaped function relating SWC to normalized soil respiration rates. Annual soil respiration estimates (1070–1246 g C m?2 yr?1) were not closely related to mean annual air temperatures among sites from different climate regimes. When soils from each site were incubated at similar temperatures in a laboratory, respiration rates for mineral soils from wetter and cooler sites were significantly higher than those for the drier and warmer sites (n=4, P<0.01). Our results indicate that the application of standard temperature‐based Q10 models to estimate soil respiration rates for larger geographic areas covering different aspects or climatic regimes are not adequate unless other factors, such as SWC and total soil nitrogen, are considered in addition to soil temperature.  相似文献   
993.
NF-kappaB activates fibronectin gene expression in rat hepatocytes   总被引:4,自引:0,他引:4  
Resveratrol (RSVL), an edible polyphenolic stilbene, claims a myriad of cardiovascular benefits. However, the molecular underpinnings of such actions are poorly understood. Currently, in sheep coronary arteries (SCA), RSVL markedly (threefold) enhanced cGMP formation (t(1/2): 6.5 min; EC(50): 3 microM). This response was not abrogated by the phosphodiesterase inhibitor (IBMX, 0.5 mM), but was partly sensitive (20-30%) to either removal of the endothelium, treatment with the nitric oxide synthase-inhibitor (L-NMMA, 10 microM), or with the soluble GC (sGC)-inhibitor (ODQ, 10 microM). In membrane preparations from denuded SCA, either RSVL or the pGC agonist atrial natriuretic peptide (ANP, 0.1-1 microM) activated GC in the particulate, but not in the soluble, membrane fraction. By contrast, the nitric oxide donor, sodium nitroprusside (SNP, 1-10 microM), stimulated GC only in the soluble fraction. Further, pretreatment with RSVL partly desensitized the ANP response, but was additive to that of SNP. In arterial tension studies, RSVL relaxed PGF(2alpha)-precontracted denuded rings in a concentration-dependent manner, a response that was markedly enhanced (approximately 18 fold) in the presence of IBMX. Conversely, precontraction with phorbol ester, which also desensitizes pGC, blunted relaxations to RSVL but not to forskolin or SNP. These findings demonstrate that RSVL increases cGMP in coronary arteries, mostly by activation of pGC. This pathway triggers vasorelaxant responses that remain effective in endothelium-disrupted arteries.  相似文献   
994.
Two distinct forms of cytochrome b5 exist in the rat hepatocyte. One is associated with the membrane of the endoplasmic reticulum (microsomal, or Mc, cyt b5) while the other is associated with the outer membrane of liver mitochondria (OM cyt b5). Rat OM cyt b5, the only OM cyt b5 identified so far, has a significantly more negative reduction potential and is substantially more stable toward chemical and thermal denaturation than Mc cytochromes b5. In addition, hemin is kinetically trapped in rat OM cyt b5 but not in the Mc proteins. As a result, no transfer of hemin from rat OM cyt b5 to apomyoglobin is observed at pH values as low as 5.2, nor can the thermodyamically favored ratio of hemin orientational isomers be achieved under physiologically relevant conditions. These differences are striking given the similarity of the respective protein folds. A combined theoretical and experimental study has been conducted in order to probe the structural basis behind the remarkably different properties of rat OM and Mc cytochromes b5. Molecular dynamics (MD) simulations starting from the crystal structure of bovine Mc cyt b5 revealed a conformational change that exposes several internal residues to the aqueous environment. The new conformation is equivalent to the "cleft-opened" intermediate observed in a previously reported MD simulation of bovine Mc cyt b5 [Storch, E. M., and Daggett, V. (1995) Biochemistry 34, 9682-9693]. The rat OM protein does not adopt a comparable conformation in MD simulations, thus restricting access of water to the protein interior. Subsequent comparisons of the protein sequences and structures suggested that an extended hydrophobic network encompassing the side chains of Ala-18, Ile-32, Leu-36, and Leu-47 might contribute to the inability of rat OM cyt b5 to adopt the cleft-opened conformation and, hence, stabilize its fold relative to the Mc isoforms. A corresponding network is not present in bovine Mc cyt b5 because positions 18, 32, and 47, are occupied by Ser, Leu, and Arg, respectively. To probe the roles played by Ala-18, Ile-32, and Leu-47 in endowing rat OM cyt b5 with its unusual structural properties, we have replaced them with the corresponding residues in bovine Mc cyt b5. Hence, the I32L (single), A18S/L47R (double), and A18S/L47R/I32L (triple) mutants of rat OM cyt b5 were prepared. The stability of these proteins was found to decrease in the following order: WT rat OM > rat OM I32L > rat OM A18S/L47R > rat OM A18S/L47R/I32L > bovine Mc cyt b5. The decrease in stability of the rat OM protein correlates with the extent to which the hydrophobic cluster involving the side chains of residues 18, 32, 36, and 47 has been disrupted. Complete disruption of the hydrophobic network in the triple mutant is confirmed in a 2.0 A resolution crystal structure of the protein. Disruption of the hydrophobic network also facilitates hemin loss at pH 5.2 for the double and triple mutants, with the less stable triple mutant exhibiting the greater rate of hemin transfer to apomyoglobin. Finally, 1H NMR spectroscopy and side-by-side comparisons of the crystal structures of bovine Mc, rat OM, and rat OM A18S/L47R/I32L cyt b5 allowed us to conclude that the nature of residue 32 plays a key role in controlling the relative stability of hemin orientational isomers A and B in rat OM cyt b5. A similar analysis led to the conclusion that Leu-70 and Ser-71 play a pivotal role in stabilizing isomer A relative to isomer B in Mc cytochromes b5.  相似文献   
995.
996.
997.
We found that CKD712, an S enantiomer of YS49, strongly inhibited inducible nitric oxide synthase (iNOS) and NO induction but showed a weak inhibitory effect on cyclooxygenase-2 (COX-2) and PGE(2) induction in LPS-stimulated RAW 264.7 cells. We, therefore, investigated the molecular mechanism(s) responsible for this by using CKD712 in LPS-activated RAW264.7 cells. Treatment with either SP600125, a specific JNK inhibitor or TPCK, a NF-kappaB inhibitor, but neither ERK inhibitor PD98059 nor p38 inhibitor SB203580, significantly inhibited LPS-mediated iNOS and COX-2 induction. CKD712 inhibited NF-kappaB (p65) activity and translocation but failed to prevent JNK activation. However, AG490, a specific JAK-2/STAT-1 inhibitor, efficiently prevented LPS-mediated iNOS induction but not the induction of COX-2, and CKD712 completely blocked STAT-1 phosphorylation by LPS, suggesting that the NF-kappaB and JAK-2/STAT-1 pathways but not the JNK pathway are important for CKD712 action. Interestingly, CKD712 induced heme oxygenase 1 (HO-1) gene expression in LPS-treated cells. LPS-induced NF-kappaB and STAT-1 activation was partially prevented by HO-1 overexpression. Furthermore, HO-1 siRNA partly reversed not only the LPS-induced NF-kappaB activation and STAT-1 phosphorylation but also inhibition of these actions by CKD 712. Additionally, silencing HO-1 by siRNA prevented CKD712 from inhibiting iNOS expression but not COX-2. When examined plasma NO and PGE(2) levels and iNOS and COX-2 protein levels in lung tissues of mice injected with LPS (10 mg/kg), pretreatment with CKD712 greatly prevented NO and iNOS induction in a dose-dependent manner and slightly affected PGE(2) and COX-2 production as expected. Taken together, we conclude that inhibition of JAK-2/STAT-1 pathways by CKD 712 is critical for the differential inhibition of iNOS and COX-2 by LPS in vitro and in vivo where HO-1 induction also contributes to this by partially modulating JAK-2/STAT-1 pathways.  相似文献   
998.
Plant laccases are thought to function in the oxidation of monolignols which leads to higher order lignin formation. Only a hand‐full of laccases in plants have been functionally evaluated, and as such little is known about the breadth of their impact on cell wall chemistry or structure. Here, we describe a previously uncharacterized laccase from Populus, encoded by locus Potri.008G064000, whose reduced expression resulted in transgenic Populus trees with changes in syringyl/guaiacyl ratios as well as altered sugar release phenotypes. These phenotypes are consistent with plant biomass exhibiting reduced recalcitrance. Interestingly, the transgene effect on recalcitrance is dependent on a mild pretreatment prior to chemical extraction of sugars. Metabolite profiling suggests the transgene modulates phenolics that are associated with the cell wall structure. We propose that this particular laccase has a range of functions related to oxidation of phenolics and conjugation of flavonoids that interact with lignin in the cell wall.  相似文献   
999.
Optimizing the production of microporous activated carbon from waste palm shell was done by applying experimental design methodology. The product, palm shell activated carbon was tested for removal of SO2 gas from flue gas. The activated carbon production was mathematically described as a function of parameters such as flow rate, activation time and activation temperature of carbonization. These parameters were modeled using response surface methodology. The experiments were carried out as a central composite design consisting of 32 experiments. Quadratic models were developed for surface area, total pore volume, and microporosity in term of micropore fraction. The models were used to obtain the optimum process condition for the production of microporous palm shell activated carbon useful for SO2 removal. The optimized palm shell activated carbon with surface area of 973 m(2)/g, total pore volume of 0.78 cc/g and micropore fraction of 70.5% showed an excellent agreement with the amount predicted by the statistical analysis. Palm shell activated carbon with higher surface area and microporosity fraction showed good adsorption affinity for SO2 removal.  相似文献   
1000.
Artemisinin and its derivatives, which have been known as antimalarial drugs, have also demonstrated their cytotoxicity against tumor cells. It has been proposed that antitumor activity depends on the lipophilicity of functional group on artemisinin derivatives. Solution structures of two artemisinin derivatives as antitumor drug candidates, deoxoartemisinin and carboxypropyldeoxoartemisinin, were determined by NMR spectroscopy to elucidate structure-activity relationship. According to biological assay, antitumor efficiencies are not dependent upon lipophilicity. Instead, these compounds demonstrated their distinctive structural features of boat/chair conformation and capability to interact with receptors, as they have different efficiencies on antitumor activity. Especially, carboxypropyl moiety or carbonyl moiety in artemisinin derivatives influences the conformation and stability of ring structure. Although the detailed mechanism of antitumor activity by artemisinin derivatives has not been addressed, we suggest that antitumor activity is not determined only with lipophilicity and that artemisinin derivatives have specific target proteins in each type of cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号