首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2345篇
  免费   189篇
  国内免费   1篇
  2535篇
  2023年   10篇
  2022年   30篇
  2021年   33篇
  2020年   19篇
  2019年   29篇
  2018年   28篇
  2017年   22篇
  2016年   53篇
  2015年   129篇
  2014年   158篇
  2013年   179篇
  2012年   195篇
  2011年   194篇
  2010年   110篇
  2009年   109篇
  2008年   130篇
  2007年   121篇
  2006年   109篇
  2005年   108篇
  2004年   102篇
  2003年   72篇
  2002年   70篇
  2001年   66篇
  2000年   56篇
  1999年   46篇
  1998年   28篇
  1997年   16篇
  1996年   13篇
  1995年   11篇
  1994年   12篇
  1993年   7篇
  1992年   26篇
  1991年   40篇
  1990年   24篇
  1989年   17篇
  1988年   19篇
  1987年   14篇
  1986年   13篇
  1985年   13篇
  1983年   6篇
  1981年   5篇
  1980年   6篇
  1979年   8篇
  1978年   11篇
  1977年   11篇
  1976年   8篇
  1975年   7篇
  1974年   8篇
  1971年   4篇
  1969年   5篇
排序方式: 共有2535条查询结果,搜索用时 15 毫秒
101.
102.
A new species, Obolarina persica, is described from Iran. It is widely associated with dying Quercus brantii, on which it produces charcoal-like stromata. The fungus described herein differs from the other described species, Ob. dryophila, primarily in its much larger ascospores.  相似文献   
103.
During disease progression to AIDS, HIV-1 infected individuals become increasingly immunosuppressed and susceptible to opportunistic infections. It has also been demonstrated that multiple subsets of dendritic cells (DC), including DC-SIGN(+) cells, become significantly depleted in the blood and lymphoid tissues of AIDS patients, which may contribute to the failure in initiating effective host immune responses. The mechanism for DC depletion, however, is unclear. It is also known that vast quantities of viral envelope protein gp120 are shed from maturing HIV-1 virions and form circulating immune complexes in the serum of HIV-1-infected individuals, but the pathological role of gp120 in HIV-1 pathogenesis remains elusive. Here we describe a previously unrecognized mechanism of DC death in chronic HIV-1 infection, in which ligation of DC-SIGN by gp120 sensitizes DC to undergo accelerated apoptosis in response to a variety of activation stimuli. The cultured monocyte-derived DC and also freshly-isolated DC-SIGN(+) blood DC that were exposed to either cross-linked recombinant gp120 or immune-complex gp120 in HIV(+) serum underwent considerable apoptosis after CD40 ligation or exposure to bacterial lipopolysaccharide (LPS) or pro-inflammatory cytokines such as TNFα and IL-1β. Furthermore, circulating DC-SIGN(+) DC that were isolated directly from HIV-1(+) individuals had actually been pre-sensitized by serum gp120 for activation-induced exorbitant apoptosis. In all cases the DC apoptosis was substantially inhibited by DC-SIGN blockade. Finally, we showed that accelerated DC apoptosis was a direct consequence of excessive activation of the pro-apoptotic molecule ASK-1 and transfection of siRNA against ASK-1 significantly prevented the activation-induced excessive DC death. Our study discloses a previously unknown mechanism of immune modulation by envelope protein gp120, provides new insights into HIV immunopathogenesis, and suggests potential therapeutic approaches to prevent DC depletion in chronic HIV infection.  相似文献   
104.
Capsule is an important virulence factor in bacteria. A total of 78 capsular types have been identified in Klebsiella pneumoniae. However, there are limitations in current typing methods. We report here the development of a new genotyping method based on amplification of the variable regions of the wzc gene. Fragments corresponding to the variable region of wzc were amplified and sequenced from 76 documented capsular types of reference or clinical strains. The remaining two capsular types (reference strains K15 and K50) lacked amplifiable wzc genes and were proven to be acapsular. Strains with the same capsular type exhibited ≧94% DNA sequence identity across the variable region (CD1-VR2-CD2) of wzc. Strains with distinct K types exhibited <80% DNA sequence identity across this region, with the exception of three pairs of strains: K22/K37, K9/K45, and K52/K79. Strains K22 and K37 shared identical capsular polysaccharide synthesis (cps) genes except for one gene with a difference at a single base which resulted in frameshift mutation. The wzc sequences of K9 and K45 exhibited high DNA sequence similarity but possessed different genes in their cps clusters. K52 and K79 exhibited 89% wzc DNA sequence identity but were readily distinguished from each other at the DNA level; in contrast, strains with the same capsular type as K52 exhibited 100% wzc sequence identity. A total of 29 strains from patients with bacteremia were typed by the wzc system. wzc DNA sequences confirmed the documented capsular type for twenty-eight of these clinical isolates; the remaining strain likely represents a new capsular type. Thus, the wzc genotyping system is a simple and useful method for capsular typing of K. pneumoniae.  相似文献   
105.
Antizymes delicately regulate ornithine decarboxylase (ODC) enzyme activity and polyamine transportation. One member of the family, antizyme-1, plays vital roles in molecular and cellular functions, including developmental regulation, cell cycle, proliferation, cell death, differentiation and tumorigenesis. However, the question of how does it participate in the cell apoptotic mechanism is still unsolved. To elucidate the contribution of human antizyme-1 in haematopoietic cell death, we examine whether inducible overexpression of antizyme enhances apoptotic cell death. Antizyme reduced the viability in a dose- and time-dependent manner of human leukemia HL-60 cells, acute T leukemia Jurkat cells and mouse macrophage RAW 264.7 cells. The apoptosis-inducing activities were determined by nuclear condensation, DNA fragmentation, sub-G1 appearance, loss of mitochondrial membrane potential (Δψ m ), release of mitochondrial cytochrome c into cytoplasm and proteolytic activation of caspase 9 and 3. Following conditional antizyme overexpression, all protein levels of cyclin-dependent kinases (Cdks) and cyclins are not significantly reduced, except cyclin D, before their entrance into apoptotic cell death. However, introduced cyclin D1 into Jurkat T tetracycline (Tet)-On cell system still couldn’t rescue cells from apoptosis. Antizyme doesn’t influence the expression of tumor suppressor p53 and its downstream p21, but it interferes in the expressions of Bcl-2 family. Inducible antizyme largely enters mitochondria resulting in cytochrome c release from mitochondria to cytosol following Bcl-xL decrease and Bax increase. According to these data, we suggest that antizyme induces apoptosis mainly through mitochondria-mediated and cell cycle-independent pathway. Furthermore, antizyme induces apoptosis not only by Bax accumulation reducing the function of the Bcl-2 family, destroying the Δψ m , and releasing cytochrome c to cytoplasm but also by the activation of apoptosomal caspase cascade.  相似文献   
106.
The biological actions of LIGHT, a member of the tumor necrosis factor superfamily, are mediated by the interaction with lymphotoxin-beta receptor (LTbetaR) and/or herpes virus entry mediator (HVEM). Previous study demonstrated high-level expressions of LIGHT and HVEM receptors in atherosclerotic plaques. To investigate the role of LIGHT in the functioning of macrophages and vascular smooth muscle cells (VSMC) in relation to atherogenesis, we determined the effects of LIGHT on macrophage migration and VSMC proliferation. We found LIGHT through HVEM activation can induce both events. LIGHT-induced macrophage migration was associated with activation of signaling kinases, including MAPKs, PI3K/Akt, NF-kappaB, Src members, and FAK. Proliferation of VSMC was also shown relating to the activation of MAPKs, PI3K/Akt, and NF-kappaB, which consequently led to alter the expression of cell cycle regulatory molecules. Down-regulation of p21, p27, and p53, and inversely up-regulation of cyclin D and RB hyper-phosphorylation were demonstrated. In conclusion, LIGHT acts as a novel mediator for macrophage migration and VSMC proliferation, suggesting its involvement in the atherogenesis.  相似文献   
107.
The effect of celecoxib on renal tubular cells is largely unexplored. In Madin Darby canine kidney (MDCK) cells, the effect of celecoxib on intracellular CaCa2+ concentration ([Ca2+]i) and proliferation was examined by using the Ca(2 +)-sensitive fluorescent dye fura-2 and the viability detecting fluorescent dye tetrazolium, respectively. Celecoxib (> or =1 micro M) caused an increase of [CaCa2+]i in a concentration-dependent manner. Celecoxib-induced [CaCa2+]i increase was partly reduced by removal of extracellular CaCa2+. Celecoxib-induced CaCa2+ influx was independently suggested by MnCa2+ influx-induced fura-2 fluorescence quench. In Ca(2 +)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2 +)-ATPase, caused a monophasic [CaCa2+]i increase, after which celecoxib only induced a tiny [CaCa2+]i increase; conversely, pretreatment with celecoxib completely inhibited thapsigargin-induced [CaCa2+]i increases. U73122, an inhibitor of phospholipase C, abolished ATP (but not celecoxib)-induced [CaCa2+]i increases. Overnight incubation with 1 or 10 micro M celecoxib decreased cell viability by 80% and 100%, respectively. These data indicate that celecoxib evokes a [CaCa2+]i increase in renal tubular cells by stimulating both extracellular CaCa2+ influx and intracellular CaCa2+ release and is highly toxic to renal tubular cells in vitro.  相似文献   
108.
Hepatitis C virus (HCV) core protein is a multifunctional protein. We examined whether it can interact with cellular proteins, thus contributing to viral pathogenesis. Using the HCV core protein as a bait to screen a human liver cDNA library in a yeast two-hybrid screening system, we have isolated several positive clones encoding cellular proteins that interact with the HCV core protein. Interestingly, more than half of these clones encode the cytoplasmic domain of lymphotoxin-beta receptor (LT betaR), which is a member of the tumor necrosis factor receptor family. Their binding was confirmed by in vitro glutathione S-transferase fusion protein binding assay and protein-protein blotting assay to be direct and specific. The binding sites were mapped within a 58-amino-acid region of the cytoplasmic tail of LT betaR. The binding site in the HCV core protein was localized within amino acid residues 36 to 91 from the N terminus, corresponding to the hydrophilic region of the protein. In mammalian cells, the core protein was found to be associated with the membrane-bound LT betaR. Since the LT betaR is involved in germinal center formation and developmental regulation of peripheral lymphoid organs, lymph node development, and apoptotic signaling, the binding of HCV core protein to LT betaR suggests the possibility that this viral protein has an immunomodulating function and may explain the mechanism of viral persistence and pathogenesis of HCV.  相似文献   
109.

Background

Anesthetic propofol has immunomodulatory effects, particularly in the area of anti-inflammation. Bacterial endotoxin lipopolysaccharide (LPS) induces inflammation through toll-like receptor (TLR) 4 signaling. We investigated the molecular actions of propofol against LPS/TLR4-induced inflammatory activation in murine RAW264.7 macrophages.

Methodology/Principal Findings

Non-cytotoxic levels of propofol reduced LPS-induced inducible nitric oxide synthase (iNOS) and NO as determined by western blotting and the Griess reaction, respectively. Propofol also reduced the production of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-10 as detected by enzyme-linked immunosorbent assays. Western blot analysis showed propofol inhibited LPS-induced activation and phosphorylation of IKKβ (Ser180) and nuclear factor (NF)-κB (Ser536); the subsequent nuclear translocation of NF-κB p65 was also reduced. Additionally, propofol inhibited LPS-induced Akt activation and phosphorylation (Ser473) partly by reducing reactive oxygen species (ROS) generation; inter-regulation that ROS regulated Akt followed by NF-κB activation was found to be crucial for LPS-induced inflammatory responses in macrophages. An in vivo study using C57BL/6 mice also demonstrated the anti-inflammatory properties against LPS in peritoneal macrophages.

Conclusions/Significance

These results suggest that propofol reduces LPS-induced inflammatory responses in macrophages by inhibiting the interconnected ROS/Akt/IKKβ/NF-κB signaling pathways.  相似文献   
110.
Understanding how diversity of neural cells is generated is one of the main tasks of developmental biology. The Hairy/E(spl) family members are potential targets of Notch signaling, which has been shown to be fundamental to neural cell maintenance, cell fate decisions, and compartment boundary formation. However, their response to Notch signaling and their roles in neurogenesis are still not fully understood. In the present study, we isolated a zebrafish homologue of hairy/E(spl), her8a, and showed this gene is specifically expressed in the developing nervous system. her8a is positively regulated by Su(H)-dependent Notch signaling as revealed by a Notch-defective mutant and injection of variants of the Notch intracellular regulator, Su(H). Morpholino knockdown of Her8a resulted in upregulation of proneural and post-mitotic neuronal markers, indicating that Her8a is essential for the inhibition of neurogenesis. In addition, markers for glial precursors and mature glial cells were down-regulated in Her8a morphants, suggesting Her8a is required for gliogenesis. The role of Her8a and its response to Notch signaling is thus similar to mammalian HES1, however this is the converse of what is seen for the more closely related mammalian family member, HES6. This study not only provides further understanding of how the fundamental signaling pathway, Notch signaling, and its downstream genes mediate neural development and differentiation, but also reveals evolutionary diversity in the role of H/E(spl) genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号