首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1215篇
  免费   98篇
  2021年   7篇
  2019年   8篇
  2018年   8篇
  2017年   8篇
  2016年   22篇
  2015年   37篇
  2014年   28篇
  2013年   49篇
  2012年   51篇
  2011年   43篇
  2010年   34篇
  2009年   47篇
  2008年   49篇
  2007年   70篇
  2006年   55篇
  2005年   50篇
  2004年   60篇
  2003年   45篇
  2002年   41篇
  2001年   30篇
  2000年   48篇
  1999年   40篇
  1998年   12篇
  1997年   16篇
  1996年   13篇
  1995年   12篇
  1994年   7篇
  1993年   10篇
  1992年   26篇
  1991年   29篇
  1990年   33篇
  1989年   25篇
  1988年   19篇
  1987年   28篇
  1986年   23篇
  1985年   23篇
  1984年   27篇
  1983年   14篇
  1982年   12篇
  1981年   10篇
  1979年   22篇
  1978年   9篇
  1977年   13篇
  1975年   9篇
  1974年   14篇
  1973年   11篇
  1972年   6篇
  1971年   6篇
  1970年   13篇
  1968年   6篇
排序方式: 共有1313条查询结果,搜索用时 15 毫秒
121.
Plastomes of the peridinin-containing dinoflagellates are composed of a limited number of genes, which are carried individually on small circular molecules, termed 'minicircles'. Although the prevalent plastid chromosome of most algae and plants has only a single copy of each gene, our previous study showed that low copy numbers of multiple variants of the gene psbA co-exist with the 'ordinary' gene encoding the D1 protein in minicircles of Alexandrium tamarense. Although none of the psbA variants encoded the entire protein, they persisted in culture. In this study, we compared the distribution and structure of psbA and psbD variants in two species of Alexandrium to characterize DNA rearrangement within these genes. In addition to four previously reported psbA variants, three psbD variants were found in A. tamarense minicircles. The ordinary psbA and psbD genes also co-existed with variants in another species, A. catenella. The sequences of the ordinary genes were virtually identical in the two species. All the variants comprised insertion or deletion mutations, with no base substitutions being identified. Duplicated parts of the coding sequences were contained in most of the insertions. Short direct repeats (4-14?bp) and/or adenine?+?thymine-rich motifs were present in all mutation regions, although the position and/or the sequence of each DNA rearrangement was unique to each variant. The results indicated that replication-based repeat-mediated recombination was responsible for generation of the variants.  相似文献   
122.
123.
We previously reported that CS (chondroitin sulfate) GAG (glycosaminoglycan), expressed on MCSP (melanoma-specific CS proteoglycan), is important for regulating MT3-MMP [membrane-type 3 MMP (matrix metalloproteinase)]-mediated human melanoma invasion and gelatinolytic activity in vitro. In the present study, we sought to determine if CS can directly enhance MT3-MMP-mediated activation of pro-MMP-2. Co-immunoprecipitation studies suggest that MCSP forms a complex with MT3-MMP and MMP-2 on melanoma cell surface. When melanoma cells were treated with betaDX (p-nitro-beta-D-xylopyranoside) to inhibit coupling of CS on the core protein, both active form and proform of MMP-2 were no longer co-immunoprecipitated with either MCSP or MT3-MMP, suggesting a model in which CS directly binds to MMP-2 and presents the gelatinase to MT3-MMP to be activated. By using recombinant proteins, we determined that MT3-MMP directly activates pro-MMP-2 and that this activation requires the interaction of the C-terminal domain of pro-MMP-2 with MT3-MMP. Activation of pro-MMP-2 by suboptimal concentrations of MT3-MMP is also significantly enhanced in the presence of excess C4S (chondroitin 4-sulfate), whereas C6S (chondroitin 6-sulfate) or low-molecular-mass hyaluronan was ineffective. Affinity chromatography studies using CS isolated from aggrecan indicate that the catalytic domain of MT3-MMP and the C-terminal domain of MMP-2 directly bind to the GAG. Thus the direct binding of pro-MMP-2 with CS through the C-domain would present the catalytic domain of pro-MMP-2 to MT3-MMP, which facilitates the generation of the active form of MMP-2. These results suggest that C4S, which is expressed on tumour cell surface, can function to bind to pro-MMP-2 and facilitate its activation by MT3-MMP-expressing tumour cells to enhance invasion and metastasis.  相似文献   
124.
125.
Bacterial FAS provides essential fatty acids for use in the assembly of key cellular components. Among them, FabI is an enoyl-ACP reductase which catalyzes the final and rate-limiting step of bacterial FAS. It is a potential target for selective antibacterial action, because it shows low overall sequence homology with mammalian enzymes. Until today, various compounds have been reported as inhibitors of bacterial FabI-inhibitory compounds. To discover novel small-molecular FabI inhibitors, we initially screened our compound library for inhibitory activity toward FabI of Escherichia coli. And discovered 4-pyridone derivatives as a lead compound. Structure optimization studies yielded 4-pyridone derivatives 7n having strong FabI-inhibitory and antibacterial activities against Staphylococcus aureus. There have been no reports concerning 4-pyridone derivatives as FabI inhibitor.  相似文献   
126.
Superoxide dismutases convert superoxide anions to molecular oxygen and hydrogen peroxide. These enzymes constitute one of the major defense mechanisms of cells against oxidative stress and play a role in the pathogenesis of certain invasive bacteria. In this study, we reported for the first time here that Providencia alcalifaciens, a member of the family Enterobacteriaceae, produces a superoxide dismutase (SOD) as a major protein in culture supernatants. This protein was purified by a series of column chromatographic separations. The N-terminal amino acid sequence of the protein was determined to be highly homologous to manganese superoxide dismutase of Escherichia coli or Salmonella reported. The gene (sodA) encoding for SOD of P. alcalifaciens was cloned and sequenced. The sodA-encoded protein has a molecular weight of about 23.5 kDa, and the DNA sequence of P. alcalifaciens sodA gene (627 bp) has about 83% identity to the E. coli SOD gene. We constructed a sodA deletion mutant and its complemented strain of P. alcalifaciens. In J774, a macrophage cell line, the sodA deletion mutant was more susceptible to killing by macrophages than the wildtype strain and its complemented strain. When we injected the mutant strain, its complemented strain and wildtype strain intraperitoneally into DDY strain mice, we found that the sodA deletion mutant proved significantly less virulent while the complemented strain recovered the virulence to the same level of wildtype strain of P. alcalifaciens. These results suggested that manganese superoxide dismutase plays an important role in intracellular survival of P. alcalifaciens.  相似文献   
127.
Therapeutic antibody IgG1 has two N-linked oligosaccharide chains bound to the Fc region. The oligosaccharides are of the complex biantennary type, composed of a trimannosyl core structure with the presence or absence of core fucose, bisecting N-acetylglucosamine (GlcNAc), galactose, and terminal sialic acid, which gives rise to structural heterogeneity. Both human serum IgG and therapeutic antibodies are well known to be heavily fucosylated. Recently, antibody-dependent cellular cytotoxicity (ADCC), a lytic attack on antibody-targeted cells, has been found to be one of the critical effector functions responsible for the clinical efficacy of therapeutic antibodies such as anti-CD20 IgG1 rituximab (Rituxan®) and anti-Her2/neu IgG1 trastuzumab (Herceptin®). ADCC is triggered upon the binding of lymphocyte receptors (FcγRs) to the antibody Fc region. The activity is dependent on the amount of fucose attached to the innermost GlcNAc of N-linked Fc oligosaccharide via an α-1,6-linkage, and is dramatically enhanced by a reduction in fucose. Non-fucosylated therapeutic antibodies show more potent efficacy than their fucosylated counterparts both in vitro and in vivo, and are not likely to be immunogenic because their carbohydrate structures are a normal component of natural human serum IgG. Thus, the application of non-fucosylated antibodies is expected to be a powerful and elegant approach to the design of the next generation therapeutic antibodies with improved efficacy. In this review, we discuss the importance of the oligosaccharides attached to the Fc region of therapeutic antibodies, especially regarding the inhibitory effect of fucosylated therapeutic antibodies on the efficacy of non-fucosylated counterparts in one medical agent. The impact of completely non-fucosylated therapeutic antibodies on therapeutic fields will be also discussed.  相似文献   
128.
Vibrio parahaemolyticus strain RIMD2210633 has two sets of genes encoding two separate type III secretion systems (T3SSs), called T3SS1 and T3SS2. T3SS2 has a role in enterotoxicity and is present only in Kanagawa phenomenon-positive strains, which are pathogenic to humans. Accordingly, T3SS2 is considered to be closely related to V. parahaemolyticus human pathogenicity. Despite this, the biological actions of T3SS2 and the identity of the effector protein(s) secreted by this system have not been well understood. Here we report that T3SS2 induces a cytotoxic effect in Caco-2 and HCT-8 cells. Moreover, it was revealed that VPA1327 (vopT), a gene encoded within the proximity of T3SS2, is partly responsible for this cytotoxic effect. The VopT shows approximately 45% and 44% identity with the ADP-ribosyltransferase (ADPRT) domain of ExoT and ExoS, respectively, which are two T3SS-secreted effectors of Pseudomonas aeruginosa. T3SS2 was found to be necessary not only for the secretion, but also for the translocation of the VopT into host cells. We also demonstrate that VopT ADP-ribosylates Ras, a member of the low-molecular-weight G (LMWG) proteins both in vivo and in vitro. These results indicate that VopT is a novel ADPRT effector secreted via V. parahaemolyticus T3SS.  相似文献   
129.

Background

The lymphatic system complements the blood circulatory system in absorption and transport of nutrients, and in the maintenance of homeostasis. Angiopoietins 1 and 2 (Ang1 and Ang2) are regulators of both angiogenesis and lymphangiogenesis through the Tek/Tie-2 receptor tyrosine kinase. The response of endothelial cells to stimulation with either Ang1 or Ang2 is thought to be dependent upon the origin of the endothelial cells. In this study, we examined the effects of the angiopoietins on lymphatic, venous and arterial primary endothelial cells (bmLEC, bmVEC and bmAEC, respectively), which were isolated and cultured from bovine mesenteric vessels.

Results

BmLEC, bmVEC and bmAEC cell populations all express Tie-2 and were shown to express the appropriate cellular markers Prox-1, VEGFR3, and Neuropilin-1 that define the particular origin of each preparation. We showed that while bmLECs responded slightly more readily to angiopoietin-2 (Ang2) stimulation, bmVECs and bmAECs were more sensitive to Ang1 stimulation. Furthermore, exposure of bmLECs to Ang2 induced marginally higher levels of proliferation and survival than did exposure to Ang1. However, exposure to Ang1 resulted in higher levels of migration in bmLECs than did to Ang2.

Conclusion

Our results suggest that although both Ang1 and Ang2 can activate the Tie-2 receptor in bmLECs, Ang1 and Ang2 may have distinct roles in mesenteric lymphatic endothelial cells.  相似文献   
130.

Background  

Antibody-dependent cellular cytotoxicity (ADCC) is greatly enhanced by the absence of the core fucose of oligosaccharides attached to the Fc, and is closely related to the clinical efficacy of anticancer activity in humans in vivo. Unfortunately, all licensed therapeutic antibodies and almost all currently-developed therapeutic antibodies are heavily fucosylated and fail to optimize ADCC, which leads to a large dose requirement at a very high cost for the administration of antibody therapy to cancer patients. In this study, we explored the possibility of converting already-established antibody-producing cells to cells that produce antibodies fully lacking core fucosylation in order to facilitate the rapid development of next-generation therapeutic antibodies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号