首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4064篇
  免费   284篇
  2023年   27篇
  2022年   71篇
  2021年   102篇
  2020年   53篇
  2019年   73篇
  2018年   76篇
  2017年   83篇
  2016年   135篇
  2015年   191篇
  2014年   204篇
  2013年   272篇
  2012年   294篇
  2011年   293篇
  2010年   152篇
  2009年   142篇
  2008年   265篇
  2007年   227篇
  2006年   187篇
  2005年   180篇
  2004年   193篇
  2003年   137篇
  2002年   168篇
  2001年   66篇
  2000年   55篇
  1999年   50篇
  1998年   28篇
  1997年   30篇
  1996年   20篇
  1995年   17篇
  1994年   16篇
  1993年   24篇
  1992年   53篇
  1991年   44篇
  1990年   35篇
  1989年   35篇
  1988年   31篇
  1987年   24篇
  1986年   15篇
  1985年   28篇
  1984年   33篇
  1983年   18篇
  1982年   13篇
  1981年   19篇
  1980年   18篇
  1979年   14篇
  1978年   16篇
  1976年   18篇
  1975年   14篇
  1974年   11篇
  1971年   11篇
排序方式: 共有4348条查询结果,搜索用时 15 毫秒
891.
The promoter of an anther tapetum-specific gene,Osg6B, was fused to a-glucuronidase (GUS) gene and introduced into rice byAgrobacterium-mediated gene transfer. Fluorometric and histochemical GUS assay showed that GUS was expressed exclusively within the tapetum of anthers from the uninucleate microspore stage (7 days before anthesis) to the tricellular pollen stage (3 days before anthesis). This is the first demonstration of an anther-specific promoter directing tapetum-specific expression in rice.Abbreviations GUS ßGlucuronidase  相似文献   
892.
A high-affinity binding protein for the N-acetylchito-oligosaccharide elicitor of phytoalexin biosynthesis was identified by photoaffinity labeling and affinity cross-linking in the plasma membrane of suspension-cultured rice cells. Both a [125I]-labeled photolabile 2-(4-azidophenyl)ethylamino conjugate ([125I]-GN8-AzPEA) and a [125I]-labeled 2- (4-aminophenyl)ethylamino conjugate ([125]-GN8-APEA) of N-acetylchito-octaose were synthesized. The two conjugates were separately incubated with the plasma membrane prepared by aqueous two-phase partitioning, and covalently cross-linked to the elicitor binding site by irradiation with UV light or treatment with the cross-linking agent glutaraldehyde, respectively. Autoradiography of the SDS-PAGE gel of the solubilized membrane proteins revealed the labeling of a single 75 kDa band in both cases. The incorporation of the radiolabeled ligands into the 75 kDa protein showed a saturable mode of binding, with half-maximal incorporation at 45 and 52 nM for photoaffinity labeling and affinity cross-linking, respectively. The labeling of the 75 kDa protein was inhibited by N-acetylchito-oligasaccharides in a size-dependent manner, and N-acetylchito-octaose (GlcNAc)8 showed a half-maximal inhibition at concentrations of the order of 10 nM. However, neither chito-octaose (GlcN)8, cellopentaose nor α-1,4 linked N-acetylgalactosamine octamer (GalNAc)8 at concentrations as high as 25 μM inhibited the labeling of the 75 kDa protein. These results are in good agreement with the sensitivity and the specificity of the ‘high-affinity binding site’ previously identified by binding assays, as well as with the activities of these oligosaccharides in the induction of phytoalexin biosynthesis and other cellular responses. These results suggest that the 75 kDa protein identified by the affinity labeling represents a functional receptor for this elicitor.  相似文献   
893.
Retrograde axonal transport of latex nanospheres offers a means of delivering chemical agents to a targeted region of the central nervous system (CNS). In this study we performed microinjections of latex nanospheres into the cerebral cortex of cynomolgus monkeys and observed successful retrograde labeling of neurons in the contralateral region. Our data indicate the successful use of this delivery system, reported in studies using other animals, may also be achievable with primates as well.  相似文献   
894.
Pharaonis phoborhodopsin (ppR) is a photosensor of negative phototaxis in Natronomonas (Natronobacterium) pharaonis, an alkalophilic halophile. This protein has seven transmembrane helices into which a chromophore, all-trans retinal, binds to a specific lysine residue (located in helix G)via a protonated Schiff base. Various mutants were engineered to have a single cysteine in the F-helix. In the presence of a bulky fluorescent SH-reagent, MIANS, (2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid, illumination decreased the photoreactivity or flash-yield (absorbance deflection immediately after the flash) of the L163C ppR mutant (in which Leu-163 was replaced with Cys) without changing the photocycling rate. The fluorescence of the isolated protein increased with increasing illumination. These observations suggest that during photocycling, the space around Cys-163 in the F-helix might open, permitting reaction with the relatively large molecule. This reaction occurred only at the M-state and not at the O-state. The implications are discussed.  相似文献   
895.
896.
897.
Adaptor protein (AP) complexes play critical roles in protein sorting among different post-Golgi pathways by recognizing specific cargo protein motifs. Among the five AP complexes (AP-1–AP-5) in plants, AP-4 is one of the most poorly understood; the AP-4 components, AP-4 cargo motifs, and AP-4 functional mechanism are not known. Here, we identify the AP-4 components and show that the AP-4 complex regulates receptor-mediated vacuolar protein sorting by recognizing VACUOLAR SORTING RECEPTOR1 (VSR1), which was originally identified as a sorting receptor for seed storage proteins to target protein storage vacuoles in Arabidopsis (Arabidopsis thaliana). From the vacuolar sorting mutant library GREEN FLUORESCENT SEED (GFS), we isolated three gfs mutants that accumulate abnormally high levels of VSR1 in seeds and designated them as gfs4, gfs5, and gfs6. Their responsible genes encode three (AP4B, AP4M, and AP4S) of the four subunits of the AP-4 complex, respectively, and an Arabidopsis mutant (ap4e) lacking the fourth subunit, AP4E, also had the same phenotype. Mass spectrometry demonstrated that these four proteins form a complex in vivo. The four mutants showed defects in the vacuolar sorting of the major storage protein 12S globulins, indicating a role for the AP-4 complex in vacuolar protein transport. AP4M bound to the tyrosine-based motif of VSR1. AP4M localized at the trans-Golgi network (TGN) subdomain that is distinct from the AP-1-localized TGN subdomain. This study provides a novel function for the AP-4 complex in VSR1-mediated vacuolar protein sorting at the specialized domain of the TGN.Membrane trafficking in plants shares many fundamental features with those in yeast and animals (Bassham et al., 2008). In general, vacuolar proteins are synthesized on the rough endoplasmic reticulum and then transported to vacuoles via the Golgi apparatus (Xiang et al., 2013; Robinson and Pimpl, 2014). The vacuolar trafficking in plants has been studied by monitoring the transport of reporter proteins to lytic vacuoles in vegetative cells and tissues (Jin et al., 2001; Pimpl et al., 2003; Miao et al., 2008; Niemes et al., 2010). Recently, seed storage proteins became a model cargo for monitoring the transport of endogenous vacuolar proteins in plants (Shimada et al., 2003a; Sanmartín et al., 2007; Isono et al., 2010; Pourcher et al., 2010; Uemura et al., 2012; Shirakawa et al., 2014). During seed maturation, a large amount of storage proteins are synthesized and sorted to specialized vacuoles, the protein storage vacuoles (PSVs). To properly deliver vacuolar proteins, sorting receptors play a critical role in recognizing the vacuole-targeting signal of the proteins. VACUOLAR PROTEIN SORTING10 and Man-6-P receptor function as sorting receptors for vacuolar/lysosomal proteins in the trans-Golgi network (TGN) of yeast and mammals, respectively. The best-characterized sorting receptors in plants are VACUOLAR SORTING RECEPTOR (VSR) family proteins (De Marcos Lousa et al., 2012). VSRs have been shown to function in sorting both storage proteins to PSVs (Shimada et al., 2003a; Fuji et al., 2007) and lytic cargos to lytic vacuoles (Zouhar et al., 2010).To sort the receptors in the TGN into vacuoles/lysosomes, the adaptor protein (AP) complex binds the cytosolic domain of the receptors. The AP complexes form evolutionarily conserved machinery that mediates the post-Golgi trafficking in eukaryotic cells (Robinson, 2004). There are five types of AP complexes, AP-1 to AP-5. The functions of AP-1, AP-2, and AP-3 have been established. AP-1 appears to be involved in trafficking between the TGN and endosomes (Hirst et al., 2012), AP-2 is involved in clathrin-mediated endocytosis (McMahon and Boucrot, 2011), and AP-3 is involved in protein trafficking from the TGN/endosomes to the vacuole/lysosomes (Dell’Angelica, 2009). However, little is known about AP-4 and AP-5. Mammalian AP-4 may be involved in basolateral sorting in polarized cells and in the transport of specific cargo proteins, such as the amyloid precursor protein APP, from the TGN to endosomes (Burgos et al., 2010). The fifth AP complex, AP-5, was recently identified, and its orthologs are widely conserved in the eukaryotic genomes (Hirst et al., 2011). The AP complexes exist as heterotetrameric proteins that consist of two large subunits (β1-5 and one each of ɣ/α/δ/ε/ζ), one medium subunit (µ1-5), and one small subunit (σ1-5). The sorting mechanism is best characterized for the medium (µ) subunit, which is known to recognize the Tyr-based YXXФ motif (where Ф represents Leu, Ile, Phe, Met, or Val) that is present in the cytosolic domains of cargo proteins (Ohno et al., 1995). Mutations of the YXXФ motif abolish the interaction with µ and alter the subcellular localization of the cargo proteins.The genome of Arabidopsis (Arabidopsis thaliana) contains all five sets of putative AP genes (Bassham et al., 2008; Hirst et al., 2011). The function of AP-4 in membrane trafficking and its physiological roles in plants are largely unknown. In this study, we identified and characterized the AP-4 complex in Arabidopsis. Mutants lacking the AP-4 subunits exhibited defects in VSR1-mediated vacuolar sorting of storage proteins in seeds. Our results provide new insights into the receptor-mediated vacuolar trafficking in post-Golgi pathways.  相似文献   
898.
899.
900.
3-Isopropylmalate dehydrogenase (IPMDH) from the extreme piezophile Shewanella benthica (SbIPMDH) is more pressure-tolerant than that from the atmospheric pressure-adapted Shewanella oneidensis (SoIPMDH). To understand the molecular mechanisms of this pressure tolerance, we analyzed mutated enzymes. The results indicate that only a single mutation at position 266, corresponding to Ala (SbIPMDH) and Ser (SoIPMDH), essentially affects activity under higher-pressure conditions. Structural analyses of SoIPMDH suggests that penetration of three water molecules into the cleft around Ser266 under high-pressure conditions could reduce the activity of the wild-type enzyme; however, no water molecule is observed in the Ala266 mutant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号