首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   5篇
  2023年   3篇
  2022年   3篇
  2021年   12篇
  2020年   4篇
  2019年   5篇
  2018年   8篇
  2017年   2篇
  2016年   9篇
  2015年   6篇
  2014年   12篇
  2013年   10篇
  2012年   10篇
  2011年   19篇
  2010年   7篇
  2009年   7篇
  2008年   12篇
  2007年   4篇
  2006年   4篇
  2005年   1篇
  2004年   3篇
  2002年   1篇
  1998年   2篇
  1978年   2篇
排序方式: 共有146条查询结果,搜索用时 632 毫秒
101.
102.
In terms of generating sustainable energy resources, the prospect of producing energy and other useful materials using cyanobacteria has been attracting increasing attention since these processes require only carbon dioxide and solar energy. To establish production processes with a high productivity, in silico models to predict the metabolic activity of cyanobacteria are highly desired. In this study, we reconstructed a genome-scale metabolic model of the cyanobacterium Synechocystis sp. PCC6803, which included 465 metabolites and 493 metabolic reactions. Using this model, we performed constraint-based metabolic simulations to obtain metabolic flux profiles under various environmental conditions. We evaluated the simulated results by comparing these with experimental results from 13C-tracer metabolic flux analyses, which were obtained under heterotrophic and mixotrophic conditions. There was a good agreement of simulation and experimental results under both conditions. Furthermore, using our model, we evaluated the production of ethanol by Synechocystis sp. PCC6803, which enabled us to estimate quantitatively how its productivity depends on the environmental conditions. The genome-scale metabolic model provides useful information for the evaluation of the metabolic capabilities, and prediction of the metabolic characteristics, of Synechocystis sp. PCC6803.  相似文献   
103.
In Crenarchaea, several tRNA genes are predicted to express precursor-tRNAs (pre-tRNAs) with canonical or non-canonical introns at various positions. We initially focused on the tRNA(Thr) species of hyperthermophilic crenarchaeon, Aeropyrum pernix (APE) and found that in the living APE cells three tRNA(Thr) species were transcribed and subsequently matured to functional tRNAs. During maturation, introns in two of them were cleaved from standard and non-standard positions. Biochemical studies revealed that the APE splicing endonuclease (APE-EndA) removed both types of introns, including the non-canonical introns, without any nucleotide modification. To clarify the underlying reasons for broad substrate specificity of APE-EndA, we determined the crystal structure of wild-type APE-EndA and subsequently compared its structure with that of Archaeaoglobus fulgidus (AFU)-EndA, which has narrow substrate specificity. Remarkably, structural comparison revealed that APE-EndA possesses a Crenarchaea specific loop (CSL). Introduction of CSL into AFU-EndA enhanced its intron-cleaving activity irrespective of the position or motif of the intron. Thus, our biochemical and crystallographic analyses of the chimera-EndA demonstrated that the CSL is responsible for the broad substrate specificity of APE-EndA. Furthermore, mutagenesis studies revealed that Lys44 in CSL functions as the RNA recognition site.  相似文献   
104.
Drosophila pole (germ) plasm contains germline and abdominal determinants. Its assembly begins with the localization and translation of oskar (osk) RNA at the oocyte posterior, to which the pole plasm must be restricted for proper embryonic development. Osk stimulates endocytosis, which in turn promotes actin remodeling to form long F-actin projections at the oocyte posterior pole. Although the endocytosis-coupled actin remodeling appears to be crucial for the pole plasm anchoring, the mechanism linking Osk-induced endocytic activity and actin remodeling is unknown. Here, we report that a Golgi-endosomal protein, Mon2, acts downstream of Osk to remodel cortical actin and to anchor the pole plasm. Mon2 interacts with two actin nucleators known to be involved in osk RNA localization in the oocyte, Cappuccino (Capu) and Spire (Spir), and promotes the accumulation of the small GTPase Rho1 at the oocyte posterior. We also found that these actin regulators are required for Osk-dependent formation of long F-actin projections and cortical anchoring of pole plasm components. We propose that, in response to the Osk-mediated endocytic activation, vesicle-localized Mon2 acts as a scaffold that instructs the actin-remodeling complex to form long F-actin projections. This Mon2-mediated coupling event is crucial to restrict the pole plasm to the oocyte posterior cortex.  相似文献   
105.
Pollen tube growth is crucial for the delivery of sperm cells to the ovule during flowering plant reproduction. Previous in vitro imaging of Lilium longiflorum and Nicotiana tabacum has shown that growing pollen tubes exhibit a tip-focused Ca2+ concentration ([Ca2+]) gradient and regular oscillations of the cytosolic [Ca2+] ([Ca2+]cyt) in the tip region. Whether this [Ca2+] gradient and/or [Ca2+]cyt oscillations are present as the tube grows through the stigma (in vivo condition), however, is still not clear. We monitored [Ca2+]cyt dynamics in pollen tubes under various conditions using Arabidopsis (Arabidopsis thaliana) and N. tabacum expressing yellow cameleon 3.60, a fluorescent calcium indicator with a large dynamic range. The tip-focused [Ca2+]cyt gradient was always observed in growing pollen tubes. Regular oscillations of the [Ca2+]cyt, however, were rarely identified in Arabidopsis or N. tabacum pollen tubes grown under the in vivo condition or in those placed in germination medium just after they had grown through a style (semi-in vivo condition). On the other hand, regular oscillations were observed in vitro in both growing and nongrowing pollen tubes, although the oscillation amplitude was 5-fold greater in the nongrowing pollen tubes compared with growing pollen tubes. These results suggested that a submicromolar [Ca2+]cyt in the tip region is essential for pollen tube growth, whereas a regular [Ca2+] oscillation is not. Next, we monitored [Ca2+] dynamics in the endoplasmic reticulum ([Ca2+]ER) in relation to Arabidopsis pollen tube growth using yellow cameleon 4.60, which has a lower affinity for Ca2+ compared with yellow cameleon 3.60. The [Ca2+]ER in pollen tubes grown under the semi-in vivo condition was between 100 and 500 μm. In addition, cyclopiazonic acid, an inhibitor of ER-type Ca2+-ATPases, inhibited growth and decreased the [Ca2+]ER. Our observations suggest that the ER serves as one of the Ca2+ stores in the pollen tube and cyclopiazonic acid-sensitive Ca2+-ATPases in the ER are required for pollen tube growth.In many flowering plants, a pollen grain that lands on the top surface of a stigma will hydrate and germinate a pollen tube. Following germination, the pollen tube enters the style and grows through the wall of transmitting tract cells on the way to the ovary, where the tube emerges to release the sperm for double fertilization. Therefore, pollen tube growth is essential for reproduction in flowering plants.Since Brewbaker and Kwack (1963) revealed that Ca2+ is essential for in vitro pollen tube cultures, the relationship between the Ca2+ concentration ([Ca2+]) and pollen tube growth has been further examined under in vitro germination culture conditions. Ratiometric ion imaging using fluorescent dye has revealed that the apical domain of a pollen tube grown in vitro contains a tip-focused [Ca2+] gradient (Pierson et al., 1994, 1996; Cheung and Wu, 2008) and that the cytoplasmic [Ca2+] ([Ca2+]cyt) in the tip region and the growth rate oscillate with the same periodicity (Pierson et al., 1996; Holdaway-Clarke et al., 1997; Messerli and Robinson, 1997). Therefore, oscillation of the [Ca2+]cyt has been thought to correlate with pollen tube growth. It is not clear, however, whether regular [Ca2+]cyt oscillations in the tip region occur in pollen tubes growing through stigmas and styles.The [Ca2+]cyt is controlled temporally and spatially by transporters in the membranes of intracellular compartments and in the plasma membrane (Sze et al., 2000). Studies using a Ca2+-sensitive vibrating electrode revealed Ca2+ influx in the tip region of the pollen tube (Pierson et al., 1994; Holdaway-Clarke et al., 1997; Franklin-Tong et al., 2002). Stretch-activated Ca2+ channels have been found in the plasma membrane using patch-clamp electrophysiology (Kuhtreiber and Jaffe, 1990; Dutta and Robinson, 2004). Recently, CNGC18 was identified as a Ca2+-permeable channel in the plasma membrane that is essential for pollen tube growth (Frietsch et al., 2007). The intracellular compartments that store Ca2+ in the pollen tube and the relevant Ca2+ transporters, however, have yet to be identified.Yellow cameleons are genetically encoded Ca2+ indicators that were developed to monitor the [Ca2+] in living cells (Miyawaki et al., 1997). These indicators are chimeric proteins consisting of enhanced cyan fluorescent protein (ECFP), calmodulin (CaM), a glycylglycine linker, the CaM-binding domain of myosin light chain kinase (M13), and enhanced yellow fluorescent protein (EYFP). When the CaM domain binds Ca2+, the domain associates with the M13 peptide and induces fluorescence resonance energy transfer (FRET) between ECFP and EYFP. Several types of cameleons have been developed by tuning the CaM domain binding affinity for Ca2+. Yellow cameleon 2.1 (YC2.1) is a high-affinity indicator that has been used to monitor the [Ca2+]cyt in Arabidopsis (Arabidopsis thaliana) guard cells (Allen et al., 1999, 2000, 2001), Lilium longiflorum and Nicotiana tabacum pollen tubes (Watahiki et al., 2004), and the root hair of Medicago truncatula (Miwa et al., 2006). YC3.1 is a low-affinity indicator that has been used to monitor the [Ca2+]cyt during pollen germination and in papilla cells of Arabidopsis (Iwano et al., 2004).Recently, YC3.60 was developed as a new YC variant (Nagai et al., 2004), in which the acceptor fluorophore is a circularly permuted version of Venus rather than EYFP (Nagai et al., 2002). YC3.60 has a monophasic Ca2+ dependency with a dissociation constant (Kd) of 0.25 μm. Compared with YC3.1, YC3.60 is equally bright with a 5- to 6-fold larger dynamic range. Thus, YC3.60 results in a markedly enhanced signal-to-noise ratio, thereby enabling Ca2+ imaging experiments that were not possible with conventional YCs. On the other hand, YC4.60 was developed by mutating the Ca2+-binding loop of CaM in YC3.60. Because YC4.60 has a significantly lower Ca2+ affinity with a biphasic Ca2+ dependency (Kd: 58 nm and 14.4 μm), it allows changes in [Ca2+] dynamics to be detected against a high background [Ca2+] (Nagai et al., 2004).To examine whether the [Ca2+]cyt oscillates in pollen tubes growing through a stigma after pollination (in vivo condition), in those placed in germination medium immediately after passing through a style (semi-in vivo condition), or in those grown in germination medium (in vitro condition), we generated transgenic Arabidopsis and N. tabacum lines expressing the YC3.60 gene in their pollen grains and monitored Ca2+ dynamics in the pollen tube tip. We also examined how inhibitors of pollen tube growth affect Ca2+ dynamics in pollen tubes growing under the semi-in vivo condition. To examine Ca2+ dynamics in the endoplasmic reticulum (ER), we generated transgenic Arabidopsis plants expressing YC4.60 in the pollen tube ER. The results are discussed in relation to the physiological relevance of [Ca2+] oscillations for pollen tube growth.  相似文献   
106.
A strategy for arranging two porphyrin moieties in a face-to-face fashion in polymeric material was demonstrated by molecular imprinting, whereby porphyrin Zn(II) complex monomers were cross-linked with ethylene glycol dimethacrylate in the presence of pyrazine or 1,5-naphthyridine as a template molecule. In chromatographic studies using the resultant imprinted polymers as stationary phase, both the polymers showed selectivity for the original template molecule, suggesting that two zinc porphyrin moieties were immobilized in the face-to-face fashion, and were center-aligned for pyrazine recognition and offset-arranged for 1,5-naphthyridine recognition. The imprinted polymer with porphyrin moieties also showed a decrease in its fluorescence intensity in response to the concentration of the target molecule, suggesting the potential utility as sensing material.  相似文献   
107.
We attempted to inactivate endopolygaolacturonase from Stereum purpureum (EndoPG) IV of identical origin by linking the pro-sequence of S. purpureum Pro-EndoPG I to the C-terminus. The recombinant Pro-EndoPG IV, expressed in Escherichia coli, had no polygalacturonase (PG) activity, but activity was acquired after partial degradation of the pro-sequence with V8 protease, as was the case for Pro-EndoPG I. These results indicate that the pro-sequence of Pro-EndoPG I can suppress the PG activity of EndoPG IV.  相似文献   
108.
It has been proposed that buckling of actin stress fibers (SFs) may be associated with their disassembly. However, much of the detail remains unknown partly because the use of an elastic membrane sheet, conventionally necessary for inducing SF buckling with a mechanical compression to adherent cells, may limit high quality and quick imaging of the dynamic cellular events. Here, we present an alternate approach to induce buckling behavior of SFs on a readily observable glass plate. Actin SFs were extracted from cells, and constituent myosin II (MII) molecules were partially photo-inactivated in contractility. An addition of Mg-ATP allowed actin-myosin cross-bridge cycling and resultant contraction of only thick SFs that still contained active MII in the large volume. Meanwhile, thin SFs with virtually no active motor protein in the small volume had no choice but to buckle with the shortening movement of nearby thick SFs functioning as a compression-inducing element. This novel technique, thus allowing for selective inductions of contraction and buckling of SFs and measurements of the cellular prestress, may be applicable to not only investigations on their disassembly mechanisms but also to measurements of the relative thickness of individual SFs in each cell.  相似文献   
109.
Several beta-carboline compounds including natural products and their corresponding salts were synthesized and evaluated for antimalarial activity and cytotoxicity levels. Quaternary carbolinium cations showed much higher potencies than neutral beta-carbolines and a good correlation was observed between pi-delocalized lipophilic cationic structure and antimalarial efficacy.  相似文献   
110.
The Wnt signaling pathway can be grouped into two classes, the β‐catenin‐dependent and β‐catenin‐independent pathways. Wnt5a signaling through a β‐catenin‐independent pathway promotes microtubule (MT) remodeling during cell‐substrate adhesion, cell migration, and planar cell polarity formation. Although Wnt5a signaling and MT remodeling are known to form an interdependent regulatory loop, the underlying mechanism remains unknown. Here we show that in HeLa cells, the paralogous MT‐associated proteins Map7 and Map7D1 (Map7/7D1) form an interdependent regulatory loop with Disheveled, the critical signal transducer in Wnt signaling. Map7/7D1 bind to Disheveled, direct its cortical localization, and facilitate the cortical targeting of MT plus‐ends in response to Wnt5a signaling. Wnt5a signaling also promotes Map7/7D1 movement toward MT plus‐ends, and depletion of the Kinesin‐1 member Kif5b abolishes the Map7/7D1 dynamics and Disheveled localization. Furthermore, Disheveled stabilizes Map7/7D1. Intriguingly, Map7/7D1 and its Drosophila ortholog, Ensconsin show planar‐polarized distribution in both mouse and fly epithelia, and Ensconsin influences proper localization of Drosophila Disheveled in pupal wing cells. These results suggest that the role of Map7/7D1/Ensconsin in Disheveled localization is evolutionarily conserved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号