首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   587篇
  免费   35篇
  2023年   4篇
  2022年   5篇
  2021年   19篇
  2020年   4篇
  2019年   11篇
  2018年   13篇
  2017年   7篇
  2016年   18篇
  2015年   13篇
  2014年   33篇
  2013年   37篇
  2012年   34篇
  2011年   50篇
  2010年   20篇
  2009年   24篇
  2008年   28篇
  2007年   30篇
  2006年   30篇
  2005年   16篇
  2004年   21篇
  2003年   10篇
  2002年   15篇
  2001年   19篇
  2000年   24篇
  1999年   11篇
  1998年   8篇
  1997年   7篇
  1996年   3篇
  1995年   8篇
  1994年   6篇
  1993年   8篇
  1992年   6篇
  1990年   6篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1983年   2篇
  1982年   2篇
  1980年   2篇
  1979年   8篇
  1977年   3篇
  1976年   3篇
  1974年   5篇
  1972年   2篇
  1971年   3篇
  1970年   4篇
  1969年   3篇
  1968年   4篇
  1966年   7篇
  1965年   3篇
排序方式: 共有622条查询结果,搜索用时 15 毫秒
231.
The mechanisms by which endotoxemia causes cardiac depression have not been fully elucidated. The present study examined the involvement of nitric oxide (NO) in this pathology. Rats were infused with lipopolysaccharide (LPS) or saline, and the plasma and myocardial NO(2)(-) and NO(3)(-) (NOx) concentrations were measured before or 3, 6, and 24 h after treatment. The hearts were then immediately isolated and mounted in a Langendorff apparatus, and left ventricular developed pressure (LVDP) was determined before biochemical analysis of the myocardium. LPS injection effected the expression of inducible NO synthase (iNOS) in the myocardium, a marked increase in plasma and myocardial NOx levels, and a significant decline in LVDP compared with saline controls. The LPS-induced NO production and concomitant cardiac depression were most pronounced 6 h after LPS injection and were accompanied by a significant increase in myocardial cGMP content. Myocardial ATP levels were not significantly altered after LPS injection. Significant negative correlation was observed between LVDP and myocardial cGMP content, as well as between LVDP and plasma NOx levels. Aminoguanidine, an inhibitor of iNOS, significantly attenuated the LPS-induced NOx production and contractile dysfunction. Furthermore, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, an inhibitor of soluble guanylate cyclase, significantly decreased myocardial cGMP content and attenuated the contractile depression, although aminoguanidine or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one was not able to completely reverse myocardial dysfunction. Our data suggest that endotoxin-induced contractile dysfunction in rat hearts is associated with NO production by myocardial iNOS and a concomitant increase in myocardial cGMP.  相似文献   
232.
233.
The plant hormone auxin, which is predominantly represented by indole-3-acetic acid (IAA), is involved in the regulation of plant growth and development. Although IAA was the first plant hormone identified, the biosynthetic pathway at the genetic level has remained unclear. Two major pathways for IAA biosynthesis have been proposed: the tryptophan (Trp)-independent and Trp-dependent pathways. In Trp-dependent IAA biosynthesis, four pathways have been postulated in plants: (i) the indole-3-acetamide (IAM) pathway; (ii) the indole-3-pyruvic acid (IPA) pathway; (iii) the tryptamine (TAM) pathway; and (iv) the indole-3-acetaldoxime (IAOX) pathway. Although different plant species may have unique strategies and modifications to optimize their metabolic pathways, plants would be expected to share evolutionarily conserved core mechanisms for auxin biosynthesis because IAA is a fundamental substance in the plant life cycle. In this review, the genes now known to be involved in auxin biosynthesis are summarized and the major IAA biosynthetic pathway distributed widely in the plant kingdom is discussed on the basis of biochemical and molecular biological findings and bioinformatics studies. Based on evolutionarily conserved core mechanisms, it is thought that the pathway via IAM or IPA is the major route(s) to IAA in plants.  相似文献   
234.
Spinal muscular atrophy is caused by a functional deletion of SMN1 on Chromosome 5, which leads to a progressive loss of motor function in affected patients. SMA patients have at least one copy of a similar gene, SMN2, which produces functional SMN protein, although in reduced quantities. The severity of SMA is variable, partially due to differences in SMN2 copy numbers. Here, we report the results of a biomarker study characterizing SMA patients of varying disease severity. SMN copy number, mRNA and Protein levels in whole blood of patients were measured and compared against a cohort of healthy controls. The results show differential regulation of expression of SMN2 in peripheral blood between patients and healthy subjects.  相似文献   
235.
The primary ending of muscle spindle in man shows a dynamic and static sensitivity to stretch, but the dynamic and vibratory sensitivities as well as conduction velocity of the afferent fibres seem to be relatively low in comparison to those described in the cat.  相似文献   
236.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) are hematopoietic growth factors which stimulate the proliferation and differentiation of myeloid progenitor cells. There is a considerable degree of overlap in target cell specificity and the functional effects of GM-CSF and IL-3. GM-CSF and IL-3 induce a nearly identical pattern of protein-tyrosine phosphorylation in certain cell lines, although their receptors have no kinase domains. Furthermore, their receptor complexes share one subunit (designated as beta). These observations raise the possibility that GM-CSF and IL-3 have a common signaling pathway. Here we show that both GM-CSF and IL-3 induce tyrosine phosphorylation and kinase activity of the c-fps/fes proto-oncogene product (p92c-fes), a non-receptor protein-tyrosine kinase, in a human erythro-leukemia cell line, TF-1, which requires GM-CSF or IL-3 for growth. In addition, GM-CSF induces physical association between p92c-fes and the beta chain of the GM-CSF receptor. p92c-fes is therefore a possible signal transducer of several hematopoietic growth factors including GM-CSF and IL-3 through the common beta chain.  相似文献   
237.
Terui  Shigeharu  Furuta  Tsubasa  Kohmatsu  Yukihiro  Maruyama  Atsushi 《Limnology》2023,24(2):111-119
Limnology - Hokkaido Island is inhabited by two salamander species, Siberian salamander (Salamandrella keyserlingii) and Ezo salamander (Hynobius retardatus), which were previously considered...  相似文献   
238.
Summary Horseradish (Armoracia rusticana) hairy root clones were established from hairy roots which were transformed with the Ri plasmid in Agrobacterium rhizogenes 15834. The transformed plants, which were regenerated from hairy root clones, had thicker roots with extensive lateral branches and thicker stems, and grew faster compared with non-transformed horseradish plants. Small sections of leaves of the transformed plants generated adventitious roots in phytohormone-free G (modified Gamborg's) medium. Root proliferation was followed by adventitious shoot formation and plant regeneration. Approximately twenty plants were regenerated per square centimeter of leaf. The transformed plants were easily transferable from sterile conditions to soil. When leaf segments of the transformed plants were cultured in a liquid fertilizer under non-sterile conditions, adventitious roots were generated at the cut ends of the leaves. Adventitious shoots were generated at the boundary between the leaf and the adventitious roots and developed into complete plants. This novel life cycle arising from leaf segments is a unique property of the transformed plants derived from hairy root clones.  相似文献   
239.
Azide ions inhibited O2 evolution in PSII membranes from spinachin a time-dependent manner in the light until all activity disappeared.Illumination in the presence of azide (azide-phototreatment)irreversibly inhibited the following processes: (1) both theoxidation of water and the electron transport between the redox-activetyrosine 161 of the D1 protein (YZ) and the secondary quinoneelectron acceptor (QB) site, to the same extent; (2) the donationof electrons to the primary quinone electron acceptor (QA),as measured by monitoring the maximum variable fluorescenceof Chl; and (3) the photoproduction of the YZ radical (Y). Thus,the primary site of inhibition appeared to lie between YZ andQA. On illumination of Tris-treated PSII membranes in the presenceof azide, production of the azidyl radical was observed by spin-trappingESR. Yield of Y in Tris-treated membranes on illumination wassuppressed by azide. Electron transport from YZ to QB in Tris-treatedmembranes was inhibited only when the azidyl radical was photoproduced,and it was inhibited more rapidly than it was in the oxygenicPSII membranes. These results indicate that the azidyl radicalwas produced via a univalent oxidation of azide by Y and thatit irreversibly inhibited the electron transport from YZ toQA in Tris-treated membranes. Although the azidyl radical wasundetectable in the oxygenic PSII membranes, probably due tosteric interference by the peripheral proteins of water-oxidizingcomplex with the access of the spin-trapping reagent to theproduction site of the radical, the participation of the azidylradical in the inhibition of the oxygenic PSII membranes issuggested since simultaneous occurrence of both electron transportand azide was required for the inhibition. Possible inhibitorymechanisms and the target sites of azidyl radical are discussed. (Received April 21, 1995; Accepted July 3, 1995)  相似文献   
240.
In germinating fatty seedlings, microbodies are differentiated to leaf peroxisomes from glyoxysomes during greening, and then transformed to glyoxysomes from leaf peroxisomes during senescence. These transformations of microbodies are regulated at various level, such as gene expression, splicing of the mRNA and degradation of microbody proteins. In order to clarify the regulatory mechanisms underlying these transformations of microbodies, we tried to obtain glyoxysome-deficient mutants of Arabidopsis. We screened 2,4-dichlorophenoxybutyric acid (2,4-DB) mutants of Arabidopsis which have defects in glyoxysomal fatty acid β-oxidation. Four mutants can be classified as carrying alleles at three independent loci, which we designatedped1, ped2, andped3, respectively (whereped stands for peroxisome defective). The characteristics of theseped mutants are described. The extended abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the International Prize for Biology “Frontier of Plant Biology”  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号