首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   34篇
  2021年   2篇
  2016年   4篇
  2015年   12篇
  2014年   8篇
  2013年   10篇
  2012年   14篇
  2011年   9篇
  2010年   8篇
  2009年   7篇
  2008年   12篇
  2007年   12篇
  2006年   12篇
  2005年   11篇
  2004年   12篇
  2003年   9篇
  2002年   11篇
  2001年   4篇
  2000年   8篇
  1999年   4篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1993年   2篇
  1992年   5篇
  1991年   7篇
  1990年   10篇
  1989年   11篇
  1988年   16篇
  1987年   8篇
  1986年   7篇
  1985年   5篇
  1984年   6篇
  1983年   8篇
  1982年   4篇
  1981年   3篇
  1979年   2篇
  1978年   5篇
  1977年   6篇
  1976年   2篇
  1975年   5篇
  1974年   6篇
  1973年   2篇
  1972年   2篇
  1966年   3篇
  1965年   2篇
  1962年   2篇
  1960年   2篇
  1957年   1篇
  1956年   1篇
  1926年   1篇
排序方式: 共有323条查询结果,搜索用时 15 毫秒
21.
This review discusses the regulation of the intestinal and hypothalamic apolipoprotein A-IV (apo A-IV) gene and protein expression. Apo A-IV is a glycoprotein secreted together with triglyceride-rich lipoproteins by the small intestine. Intestinal apo A-IV synthesis is stimulated by fat absorption, probably mediated by chylomicron formation. This stimulation of intestinal apo A-IV synthesis is attenuated by intravenous leptin infusion. Chronic ingestion of a high-fat diet blunts the intestinal apo A-IV in response to dietary lipid. Intestinal apo A-IV synthesis is also stimulated by members of the pancreatic polypeptide family, including peptide YY (PYY), neuropeptide Y (NPY), and pancreatic polypeptide (PP). Recently, apo A-IV was demonstrated to be present in the hypothalamus as well. Hypothalamic apo A-IV level was reduced by food deprivation and restored by lipid feeding. Intracerebroventricular administration of apo A-IV antiserum stimulated feeding and decreased the hypothalamic apo A-IV mRNA level, implying that feeding is intimately regulated by endogenous hypothalamic apo A-IV. Central administration of NPY significantly increased hypothalamic apo A-IV mRNA levels in a dose-dependent manner.  相似文献   
22.
Prior epidemiological, prospective intervention, and peripheral and central fatty acid composition studies suggest that omega-3 fatty acid deficiency may be associated with the pathoaetiology of depression and suicide. In the present study, we determined the fatty acid composition of the postmortem prefrontal cortex (PFC) of adolescent male and female suicide victims and age-matched controls. Fatty acid composition (wt% total fatty acids) and concentrations (μmol/g) were determined in the postmortem PFC (Brodmann area 10) of male and female adolescent (aged 13–20 years) suicide victims (n=20) and age-matched controls (n=20) by gas chromatography. None of the major polyunsaturated fatty acids including the principle brain omega-3 fatty acid, docosahexaenoic acid (DHA), monounsaturated fatty acids, or saturated fatty acids differed significantly between adolescent suicide victims and controls before or after segregation by gender. The arachidonic acid (AA, 20:4n-6): DHA ratio and adrenic acid (22:4n-6) composition were negatively correlated with age at death in controls but not in suicides, and males exhibited a greater AA:DHA ratio irrespective of cause-of-death. These results demonstrate that adolescent male and female suicide victims do not exhibit DHA deficits in the postmortem PFC relative to age-matched controls, and suggest that suicide victims do not exhibit the normal age-related decrease in adrenic acid composition and the AA:DHA ratio.  相似文献   
23.
Autophagy is primarily considered a non‐selective degradation process induced by starvation. Nutrient‐independent basal autophagy, in contrast, imposes intracellular QC by selective disposal of aberrant protein aggregates and damaged organelles, a process critical for suppressing neurodegenerative diseases. The molecular mechanism that distinguishes these two fundamental autophagic responses, however, remains mysterious. Here, we identify the ubiquitin‐binding deacetylase, histone deacetylase‐6 (HDAC6), as a central component of basal autophagy that targets protein aggregates and damaged mitochondria. Surprisingly, HDAC6 is not required for autophagy activation; rather, it controls the fusion of autophagosomes to lysosomes. HDAC6 promotes autophagy by recruiting a cortactin‐dependent, actin‐remodelling machinery, which in turn assembles an F‐actin network that stimulates autophagosome–lysosome fusion and substrate degradation. Indeed, HDAC6 deficiency leads to autophagosome maturation failure, protein aggregate build‐up, and neurodegeneration. Remarkably, HDAC6 and F‐actin assembly are completely dispensable for starvation‐induced autophagy, uncovering the fundamental difference of these autophagic modes. Our study identifies HDAC6 and the actin cytoskeleton as critical components that define QC autophagy and uncovers a novel regulation of autophagy at the level of autophagosome–lysosome fusion.  相似文献   
24.
25.
Glucagon-like peptide-1 (GLP-1) is an important incretin produced in the L cells of the intestine. It is essential in the regulation of insulin secretion and glucose homeostasis. Systemic GLP-1 concentrations are typically low in rodents, so it can be difficult to assay physiological levels or detect changes in response to nutrients. We have established a method of assaying GLP-1 in response to nutrients using the intestinal lymph fistula model. Intraduodenal infusion of Intralipid (4.43 kcal/3 ml) induced a significant increase of lymphatic GLP-1 concentration compared with saline control at the peak of 30 min. (P < 0.001). Isocaloric and isovolumetric treatment with dextrin, a glucose polymer, also caused a significant fourfold increase in peak concentration at 60 min (P = 0.001). These findings indicate that intestinal lymph contains high concentrations of postprandial GLP-1. Second, they reveal that GLP-1 secretion into lymph occurs in response to both enteral carbohydrate and fat, but the response to dextrin occurs later than to Intralipid with peak times at 60 and 30 min, respectively. Third, the combination of Intralipid plus dextrin demonstrated an additive effect in the stimulation of GLP-1 with peak at 30 min. These results indicate that assessment of levels in lymph is a novel and powerful means of studying the secretion of GLP-1 and potentially other gastrointestinal hormones in vivo. Furthermore, the lymph fistula rat model provides insight into the gut hormone concentrations to which the neurons and cells in the lamina propria of the gut are likely exposed.  相似文献   
26.
27.
Many gastrointestinal meal-related signals are transmitted to the central nervous system via the vagus nerve and thereby control changes in meal size. The c-Fos-positive neuron has been used as a marker of neuronal activation after lipid meals to examine the contribution of a selective macronutrient on brain neurocircuit activity. In rats fed Intralipid, the c-Fos-positive neurons were highly stimulated in the nucleus of the solitary tract (NTS) and in the hypothalamus, including the paraventricular nucleus (PVN), arcuate nucleus of the hypothalamus (ARC), and ventromedial hypothalamus at 4 h lipid feeding. However, c-Fos-like immunoreactivity was markedly attenuated in these brain regions when chylomicron formation/secretion was blocked by Pluronic L-81. After lymph was diverted from the lymph cannulated animals, the rats had a lower number of c-Fos-positive cells in the NTS and ARC. In contrast, the rats had higher c-Fos-positive neurons in PVN. The present study also revealed that c-Fos-positive neurons induced by feeding of Intalipid were abolished by CCK type 1 receptor antagonist, Lorglumide. We conclude that the formation and/or secretion of chylomicron are critical steps for initiating neuronal activation in the brain.  相似文献   
28.
Organochlorine compounds enter the body primarily as components of the diet. Their removal from the body is via excretion into the feces. There is evidence that many people are in a positive balance, with the rate of intake of organochlorines exceeding that of their excretion. A desirable nutritional approach to this problem would both reduce dietary intake and increase fecal excretion. Nonabsorbable dietary lipids reduce the absorption of dietary organochlorines and also increase the rate of their fecal excretion. Organochlorine compounds that are stored in the body enter the intestine both in bile and through a poorly understood nonbiliary mechanism. Part of the amount that enters the intestine is excreted, and part is reabsorbed in an enterohepatic circulation. There is evidence that an increase in excretion can be achieved by interference with the enterohepatic circulation of organochlorine compounds and their metabolites. Data from animals and humans show that the presence of nonabsorbed lipid in the intestine can increase the rate of excretion in a clinically significant manner.  相似文献   
29.

Background  

Tetrahymena thermophila possesses many attributes that render it an attractive host for the expression of recombinant proteins. Surface proteins from the parasites Ichthyophthirius multifiliis and Plasmodium falciparum and avian influenza virus antigen H5N1 were displayed on the cell membrane of this ciliate. Furthermore, it has been demonstrated that T. thermophila is also able to produce a functional human DNase I. The present study investigates the heterologous expression of the functional human intestinal alkaline phosphatase (hiAP) using T. thermophila and thereby presents a powerful tool for the optimization of the ciliate-based expression system.  相似文献   
30.
Cheung CY  Tso AW  Cheung BM  Xu A  Fong CH  Ong KL  Law LS  Wat NM  Janus ED  Sham PC  Lam KS 《PloS one》2011,6(12):e28598

Context

The KCNJ11 E23K variant is associated with type 2 diabetes mellitus (T2DM) in cross-sectional studies, but conflicting findings have been reported from prospective studies.

Objective

This study aimed to evaluate whether the E23K variant could predict glycaemic progression in a Southern Chinese population.

Methods/Principal Findings

We performed a long-term prospective study on 1912 subjects from the Hong Kong Cardiovascular Risk Factors Prevalence Study (CRISPS). The KCNJ11 E23K variant was associated with the progression to prediabetes after a median interval of 12 years on multinomial logistic regression analysis, even after adjustment for traditional risk factors (OR 1.29, Page, sex, BMI and fasting plasma glucose [FPG] adjusted  = 0.02). Based on Cox proportional hazard regression analysis, the E23K variant also predicted incident prediabetes (HR 1.18, Page, sex, BMI and FPG adjusted  = 0.021). However, E23K was not associated with the progression to T2DM in either multinomial or Cox regression analysis, and the association of E23K with glycaemic progression to either prediabetes or T2DM was significant only in unadjusted Cox regression analysis (P = 0.039). In a meta-analysis of eight prospective studies including our own, involving 15680 subjects, the E23K variant was associated with incident T2DM (fixed effect: OR 1.10, P = 4×10−3; random effect: OR 1.11, P = 0.035).

Conclusions

Our study has provided supporting evidence for the role of the E23K variant in glycaemic progression in Chinese, with its effect being more evident in the early stage of T2DM, as the subjects progressed from normal glucose tolerance to prediabetes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号