首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   491篇
  免费   51篇
  542篇
  2021年   4篇
  2015年   8篇
  2014年   7篇
  2013年   14篇
  2012年   18篇
  2011年   16篇
  2010年   10篇
  2009年   22篇
  2008年   21篇
  2007年   13篇
  2006年   14篇
  2005年   20篇
  2004年   18篇
  2003年   21篇
  2002年   18篇
  2001年   17篇
  2000年   17篇
  1999年   6篇
  1998年   6篇
  1997年   7篇
  1996年   6篇
  1995年   9篇
  1994年   4篇
  1993年   6篇
  1992年   17篇
  1991年   12篇
  1990年   13篇
  1989年   14篇
  1988年   13篇
  1987年   16篇
  1986年   10篇
  1985年   19篇
  1984年   4篇
  1983年   8篇
  1980年   4篇
  1979年   9篇
  1978年   8篇
  1977年   11篇
  1976年   6篇
  1975年   7篇
  1974年   6篇
  1973年   5篇
  1972年   4篇
  1971年   4篇
  1970年   3篇
  1969年   5篇
  1968年   4篇
  1967年   4篇
  1966年   5篇
  1965年   3篇
排序方式: 共有542条查询结果,搜索用时 15 毫秒
91.
Lipid membranes structurally define the outer surface and internal organelles of cells. The multitude of proteins embedded in lipid bilayers are clearly functionally important, yet they remain poorly defined. Even today, integral membrane proteins represent a special challenge for current large scale shotgun proteomics methods. Here we used endothelial cell plasma membranes isolated directly from lung tissue to test the effectiveness of four different mass spectrometry-based methods, each with multiple replicate measurements, to identify membrane proteins. In doing so, we substantially expanded this membranome to 1,833 proteins, including >500 lipid-embedded proteins. The best method combined SDS-PAGE prefractionation with trypsin digestion of gel slices to generate peptides for seamless and continuous two-dimensional LC/MS/MS analysis. This three-dimensional separation method outperformed current widely used two-dimensional methods by significantly enhancing protein identifications including single and multiple pass transmembrane proteins; >30% are lipid-embedded proteins. It also profoundly improved protein coverage, sensitivity, and dynamic range of detection and substantially reduced the amount of sample and the number of replicate mass spectrometry measurements required to achieve 95% analytical completeness. Such expansion in comprehensiveness requires a trade-off in heavy instrument time but bodes well for future advancements in truly defining the ever important membranome with its potential in network-based systems analysis and the discovery of disease biomarkers and therapeutic targets. This analytical strategy can be applied to other subcellular fractions and should extend the comprehensiveness of many future organellar proteomics pursuits.The plasma membrane provides a fundamental physical interface between the inside and outside of any cell. Beyond creating a protected compartment with a segregated, distinct, and well controlled internal milieu for the cell, it also mediates a wide variety of basic biological functions including signal transduction, molecular transport, membrane trafficking, cell migration, cell-cell interactions, intercellular communication, and even drug resistance. Plasma membrane-associated proteins, especially integral membrane proteins (IMPs)1 that traverse the lipid bilayer, are key elements mediating these vital biological processes. Consistent with its fundamental importance in both normal cellular functions and pathophysiology, the plasma membrane has also been targeted extensively for biomarker discovery and drug development. In fact, more than two-thirds of known targets for existing drugs are plasma membrane proteins (1).Despite the potential benefits, profiling the proteome of plasma membranes comprehensively using standard large scale methods including MS-based strategies has been limited and technically quite challenging. Intrinsic hydrophobicity, a wide concentration range of proteins, and other factors have hampered IMP resolution and identification using conventional two-dimensional gel electrophoresis. Gel and gel-free protein separations, including combinations of both, have been reported as an alternative to two-dimensional gel electrophoresis (29). Yet most such efforts have focused predominantly on identifying rather soluble proteins from body fluids (i.e. plasma, serum, and cerebrospinal fluid), cell lysates, or cytoplasm. These proteins, unlike IMPs, are relatively abundant and readily susceptible to enzymatic digestion in solution. Various attempts have been made to solubilize and enrich for IMPs, including different detergents, solvents, high pH solutions, and affinity purification (1022). Even when organellar membranes are enriched through isolation by subcellular fractionation, the yield of proteins identified has been below expectation, especially for multipass transmembrane proteins such as G-protein-coupled receptors.Here we systematically characterize four analytical approaches to enhance the identification of proteins, specifically those embedded in plasma membranes isolated directly from vascular endothelium in rat lung. Endothelial cells (ECs) constitute the tissue-blood interface that controls many important physiological functions, including tissue homeostasis, nutrition, vasomotion, and even drug delivery. In vivo mapping of the EC plasma membrane proteome provides unique opportunities for extending basic understanding in vascular biology and for directing the delivery of therapeutic and imaging agents in vivo (2325). But it also presents distinct challenges beyond those generally associated with extraction, solubilization, and identification of IMPs in cells and tissues. ECs form a thin monolayer lining each blood vessel. They constitute a very small fraction of all the cells existing in tissue, thereby making it difficult to isolate sufficiently pure EC plasma membrane fractions for proteomics analysis using conventional subcellular fractionation techniques. Although relatively simple to isolate from tissue and grow in culture, ECs require cues from the tissue microenvironment to maintain their tissue-specific qualities and thus undergo rapid and considerable phenotypic drift after isolation (26).We have developed a specialized coating procedure using colloidal silica nanoparticles perfused through the blood vessels of the tissue to isolate luminal plasma membranes of the vascular endothelium as they exist natively in tissue (2628). Our initial survey of these plasma membranes isolated directly from rat lungs used primarily three standard analytical techniques of the time: two-dimensional electrophoresis, Western analysis, and the shotgun method of two-dimensional liquid chromatography-tandem mass spectrometry (24, 26). We identified 450 proteins of which only ∼15% were IMPs. Although at the time this was a notable total number of proteins, more IMPs are expected. In fact, this large scale 2DC study did not identify several well known EC surface marker proteins, including specific enzymes, adhesion molecules, and growth factor receptors.Here we comparatively analyze four different MS-based strategies involving two- and three-dimensional separation by combining protein prefractionation via SDS-PAGE with in-gel digestion to produce peptides separated by one- and two-dimensional nano-HPLC before seamless and continuous MS analysis. Each method used multiple replicate measurements to comprehensively identify proteins, especially IMPs, and in doing so achieved a clear statistical definition of completeness that permits meaningful comparisons. Ultimately this analysis greatly expanded the EC plasma membranome to 1,833 proteins of which nearly 30% are membrane-embedded.  相似文献   
92.
Twenty-two nuclear microsatellite loci were isolated from a genomic DNA library derived from Madagascar’s Rousettus madagascariensis. Marker characteristics were determined from a single population (37 individuals) from Fort Dauphin (southeastern Madagascar). Sixteen of the 22 loci were within Hardy–Weinberg expectations. These loci are highly informative with polymorphic information content values ranging between 0.757 and 0.916. These loci will provide valuable information for the study of population genetics and gene flow within this species of bats. Due to the dramatic reduction and alteration of their habitat, data generated utilizing this marker suite will potentially provide additional information for the effective long-term management of this near-threatened bat species.  相似文献   
93.
Telomeric chromatin: replicating and wrapping up chromosome ends   总被引:14,自引:0,他引:14  
Recent advances in our understanding of the specialized chromatin structure at telomeres, the ends of eukaryotic chromosomes, have focused on three separate areas: replication of telomeres through the coordinated action of conventional DNA polymerases and the telomerase enzyme, protection of the chromosome end from DNA damage checkpoint sensors and DNA-repair processes, and the discovery of a novel deacetylase enzyme (Sir2p) required for the establishment and maintenance of telomeric heterochromatin. Although the number of proteins and the complexity of their interactions at telomeres continues to grow, a picture of at least some of the major players and mechanisms underlying telomere replication, end 'capping' and chromatin assembly is beginning to emerge.  相似文献   
94.
Immunotherapy encourages the recipient’s own immune response to destroy cancer cells, and current evidence suggests that immunotherapies may be most beneficial in early metastatic castration-resistant prostate cancer (mCRPC). Sipuleucel-T is the first therapeutic cancer vaccine to be approved by both the US Food and Drug Administration and European Medicines Agency for the treatment of asymptomatic or minimally symptomatic mCRPC. Combining immunotherapy with other treatments may have potent anticancer effects; cytoreductive therapies can release tumor antigens and promote a proinflammatory environment that could augment immunotherapies. However, some cytoreductive agents or coadministered drugs may be immunosuppressive. Understanding these interactions between different mCRPC treatment modalities may offer further potential to improve patient outcomes.Key words: Combination therapy, Prostate cancer, Sipuleucel-TImmunotherapy has emerged as a powerful tool against prostate cancer, in addition to surgery, radiotherapy, hormone therapy, and chemotherapy. For 30 years, investigators tried to rebalance the compromised immune system in patients with urologic cancers using a number of different agents.1,2 In April 2010, the autologous cellular immunotherapy sipuleucel-T became the first therapeutic cancer vaccine to be approved by the US Food and Drug Administration (FDA).3 This therapy targets the prostatic acid phosphatase (PAP) and has been indicated for the treatment of asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer (mCRPC), based on results from three randomized, controlled, phase 3 studies.36 Recently, sipuleucel-T was also approved by the European Medicines Agency (EMA) for the treatment of asymptomatic or minimally symptomatic mCRPC in men in whom chemotherapy is not yet clinically indicated.7Although this immunotherapy has been shown to extend overall survival (OS),5 sequencing or combining immunotherapy with other treatments for mCRPC has the potential to further improve outcomes.8,9 However, before immunotherapy-based combination regimens can be integrated into clinical practice, it is critical to have a better understanding of the interactions between these different modalities.  相似文献   
95.
A novel asparaginase-like protein is a sperm autoantigen in rats   总被引:5,自引:0,他引:5  
A novel asparaginase-like protein (ALP) of spermatozoa was cloned from rat and human testis cDNA libraries on the basis of reactivity with antibodies produced after vasectomy. Although obstruction of the male reproductive tract is known to cause an immunologic response, few of the sperm antigens responsible for the generation of autoantibodies have been characterized. We are identifying proteins of interest by coring autoantigenic protein spots from two-dimensional (2-D) gels of rat sperm extracts and microsequencing them by mass spectrometry. The peptide sequences from ALP, a 28 kDa, pI 5.7 protein, matched to a single partial length rat EST. These peptide sequences were used to clone a cDNA encoding a novel 333 amino acid open reading frame. The new protein had a similarity to portions of L-asparaginases of plants (43%) and to glycosylasparaginases in animal cells (32%). Human ALP cDNA was subsequently cloned. It showed 77% identity to the rat ALP sequence and the gene, ASRGL1 (asparaginase-like 1), mapped to chromosome locus 11q12.3. Purified recombinant rat ALP (rALP), expressed in E. coli, was used to raise polyclonal antiserum in guinea pigs. Two observations verified that the correct protein had been cloned: 1) the anti-rALP antibody reacted with both rALP and rat sperm; and 2) post-vasectomy sera bound rALP. Anti-rALP antibody stained the midpiece of rat and human sperm coincident with staining by MitoTracker Green FM, suggesting that ALP is associated with the mitochondria. Northern analysis revealed that rat ALP message was abundantly expressed in the testis but was also present in heart, brain, liver, skeletal muscle, and kidney.  相似文献   
96.
97.
The c-ABL tyrosine kinase is activated following either the loss or mutation of its Src homology domain 3 (SH3), resulting in both increased autophosphorylation and phosphorylation of cellular substrates and cellular transformation. This suggests that the SH3 domain negatively regulates c-ABL kinase activity. For several reasons this regulation is thought to involve a cellular protein that binds to the SH3 domain. Hyperexpression of c-ABL results in an activation of its kinase, the kinase activity of purified c-ABL protein in the absence of cellular proteins is independent of either the presence or absence of a SH3 domain, and point mutations and deletions within the SH3 domain are sufficient to activate c-ABL transforming ability. To identify proteins that interact with the c-ABL SH3 domain, we screened a cDNA library by the yeast two-hybrid system, using the c-ABL SH3SH2 domains as bait. We identified a novel protein, AAP1 (ABL-associated protein 1), that associates with these c-ABL domains and fails to bind to the SH3 domain in the activated oncoprotein BCRABL. Kinase experiments demonstrated that in the presence of AAP1, the ability of c-ABL to phosphorylate either glutathione S-transferase-CRK or enolase was inhibited. In contrast, AAP1 had little effect on the phosphorylation of glutathione S-transferase-CRK by the activated ABL oncoproteins v-ABL and BCRABL. We conclude that AAP1 inhibits c-ABL tyrosine kinase activity but has little effect on the tyrosine kinase activities of oncogenic BCRABL or v-ABL protein and propose that AAP1 functions as a trans regulator of c-ABL kinase. Our data also indicate that loss of susceptibility to AAP1 regulation correlates with oncogenicity of the activated forms of c-ABL.  相似文献   
98.
Resonance energy transfer from Trp-314 to ionized Tyr-286 was proposed (Laws, W. R., and Shore, J. D. (1978) J. Biol. Chem. 253, 8593-8597) as the mechanism for the observed decrease in protein fluorescence of liver alcohol dehydrogenase seen with alkaline pH, or with the formation of a ternary complex with NAD+ and trifluoroethanol. In the present study, ultraviolet difference spectra confirm the presence of ionized tyrosine not only in these two cases but also in the ternary complex with NADH and isobutyramide. Our results indicate that ternary complex formation, with either oxidized or reduced coenzyme, causes a conformational change leading to partial ionization of tyrosine residues in regions of the enzyme far from the active site.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号