首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   40篇
  国内免费   2篇
  2017年   1篇
  2015年   5篇
  2014年   5篇
  2013年   6篇
  2012年   8篇
  2011年   11篇
  2010年   11篇
  2009年   5篇
  2008年   7篇
  2007年   11篇
  2006年   10篇
  2005年   9篇
  2004年   12篇
  2003年   9篇
  2002年   5篇
  2001年   6篇
  2000年   12篇
  1999年   9篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   7篇
  1991年   3篇
  1990年   11篇
  1989年   8篇
  1988年   4篇
  1987年   6篇
  1986年   5篇
  1985年   3篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   5篇
  1978年   4篇
  1977年   3篇
  1976年   5篇
  1975年   4篇
  1974年   4篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
  1969年   1篇
  1968年   3篇
排序方式: 共有240条查询结果,搜索用时 15 毫秒
111.
112.
K R Bley  R W Tsien 《Neuron》1990,4(3):379-391
Neuropeptides are known to modulate the excitability of frog sympathetic neurons by inhibiting the M-current and increasing the leak current, but their effects on Ca2+ channels are poorly understood. We compared effects of LHRH, substance P, epinephrine, and muscarine on Ca2+, K+, and leak currents in dissociated frog sympathetic neurons. At concentrations that inhibit M-current, LHRH and substance P strongly reduced N-type Ca2+ current and induced a leak conductance that may contribute to slow EPSPs. In contrast, muscarine produced little reduction of Ca2+ current, even in cells in which it strongly suppressed the M-current. We find that peptidergic inhibition of Ca2+ channels involves G proteins, but does not require protein kinases. In addition, it leads to reductions in Ca2(+)-activated K+ current and catecholamine release.  相似文献   
113.
114.
Recent advances in technology for measuring and manipulating cell signals   总被引:4,自引:0,他引:4  
Signal transduction research has made some glowing progress in the past 12 months. Recent advances in fluorescent proteins, small molecule fluorophores and imaging technology are generating new ways to investigate signal transduction.  相似文献   
115.
American biochemist Roger Tsien shared the 2008 Nobel Prize in Chemistry with Martin Chalfie and Osamu Shimomura for their discovery and development of the Green Fluorescent Protein (GFP). Tsien, who was born in New York in 1952 and grew up in Livingston New Jersey, began to experiment in the basement of the family home at a young age. From growing silica gardens of colorful crystallized metal salts to attempting to synthesize aspirin, these early experiments fueled what would become Tsien''s lifelong interest in chemistry and colors.Tsien''s first official laboratory experience was an NSF-supported summer research program in which he used infrared spectroscopy to examine how metals bind to thiocyanate, for which he was awarded a $10,000 scholarship in the Westinghouse Science Talent Search. Following graduation from Harvard in 1972, Tsien attended Cambridge University in England under a Marshall Scholarship. There he learned organic chemistry --a subject he''d hated as an undergraduate-- and looked for a way to synthesize dyes for imaging neuronal activity, generating BAPTA based optical calcium indicator dyes.Following the completion of his postdoctoral training at Cambridge in 1982, Tsien accepted a faculty position at the University of California, Berkeley. There he and colleagues developed and improved numerous small molecule indicators, including indicators fura-2 and indo-1.In 1989, Tsien moved his laboratory to the University of California at San Diego, where he and his colleagues developed the enhanced mutant of GFP as a way to devise a cyclic AMP (cAMP) sensor for use in live cells. They initially engineered molecules to take advantage of the conformational change that occurs when cAMP binds to protein kinase A (PKA). By labeling one part of PKA with fluoroscein and another with a rhodamine, they hoped to detect Fluorescence Resonance Energy Transfer (FRET), which would occur when the two molecules were in close proximity. The initial experiments presented numerous difficulties due to the challenges of expressing PKA subunits in E. coli, labeling the protein without destroying its function, and delivering the protein to cells via microinjection.Eventually, Tsien sought a more elegant approach, hoping to use and modify a naturally fluorescent protein that could be expressed in the cell. GFP originally described by Davenport in 1955, extracted and purified by Shimomura in 1965, and cloned by Prasher in 1992 was an appealing candidate. To make the protein more useful for their FRET studies, Tsien and colleagues modified the amino acid structure of the protein (S65T). The improved protein had an excitation peak near that of fluoroscein, and was photostable. Tsien and colleagues also solved the protein''s crystal structure, enabling them to generate additional colors with spectral properties suitable for FRET. However, when they attempted to use the GFP proteins in the detection of cAMP, they experienced further difficulties with PKA. Instead, their first successful use of GFP derivatives for FRET was in the detection of intracellular calcium using their engineered calmodulin-based calcium indicator, Cameleon.In a short time, Tsien''s work has led to further technological developments and important scientific findings. GFP and its derivatives have been used in a wide range of biological applications, from the study of protein localization to understanding how HIV spreads from cell to cell. The need for such probes is highlighted by the abundance of research conducted using these fluorescent proteins, as well as the continued development of similar fluorescent proteins, such as the coral-derived dsRED.Tsien is currently developing genetically encoded Infrared Fluorescent Proteins (IFPs), which with their long emission wavelengths of >700 nm, have the ability to pass through living tissue and improve imaging in living organisms. He is also building synthetic molecules for use in humans. He cites team effort and the contributions of students and post-docs as key components of progress and success: "Even if I had the time, I couldn''t have done the experiments, because I don''t know how. It''s very much a team effort."Download video file.(144M, mp4)  相似文献   
116.
The upper 50-kDa region of myosin may be critical for coupling between the nucleotide- and actin-binding regions. We introduced a tetracysteine motif in the upper 50-kDa domain (residues 292-297) of myosin V containing a single IQ domain (MV 1IQ), allowing us to label this site with the fluorescein biarscenical hairpin-binding dye (FlAsH) (MV 1IQ FlAsH). The enzymatic properties of MV 1IQ FlAsH were similar to those of unlabeled MV 1IQ except for a 3-fold reduced ADP-release rate. MV 1IQ FlAsH was also capable of moving actin filaments in the in vitro motility assay. To examine rotation of the upper 50-kDa region, we determined the difference in the degree of energy transfer from N-methylanthraniloyl (mant)-labeled nucleotides to FlAsH in both steady-state and transient kinetic experiments. The energy transfer efficiency was higher with mant-ATP (0.65 +/- 0.02) compared with mant-ADP (0.55 +/- 0.02) in the absence of actin. Stopped-flow measurements suggested that the energy transfer efficiency decreased with phosphate release (0.04 s(-1)) in the absence of actin. In contrast, upon mixing MV 1IQ FlAsH in the ADP.P(i) state with actin, a decrease in the energy transfer signal was observed at a rate of 13 s(-1), similar to the ADP release rate. Our results demonstrate there was no change in the energy transfer signal upon actin-activated phosphate release and suggest that actin binding alters the dynamics of the upper 50-kDa region, which may be critical for the ability of myosin to bind tightly to both ADP and actin.  相似文献   
117.
Control of mammalian translation by mRNA structure near caps   总被引:2,自引:0,他引:2  
The scanning model of RNA translation proposes that highly stable secondary structures within mRNAs can inhibit translation, while structures of lower thermal stability also affect translation if close enough to the 5' methyl G cap. However, only fragmentary information is available about the dependence of translation efficiency in live mammalian cells on the thermodynamic stability, location, and GC content of RNA structures in the 5'-untranslated region. We devised a two-color fluorescence assay for translation efficiency in single live cells and compared a wide range of hairpins with predicted thermal stabilities ranging from -10 to -50 kcal/mol and 5' G cap-to-hairpin distances of 1-46 bases. Translation efficiency decreased abruptly as hairpin stabilities increased from deltaG = -25 to -35 kcal/mol. Shifting a hairpin as little as nine bases relative to the 5' cap could modulate translation more than 50-fold. Increasing GC content diminished translation efficiency when predicted thermal stability and cap-to-hairpin distances were held constant. We additionally found naturally occurring 5'-untranslated regions affected translation differently in live cells compared with translation in in vitro lysates. Our study will assist scientists in designing experiments that deliberately modulate mammalian translation with designed 5' UTRs.  相似文献   
118.
Fat is the prime energy source for birds during prolonged exercise, but protein is also catabolized. Estimates of the amount of catabolizable fat and protein (termed fat and protein fuel) are therefore important for studying energetics of birds. As fat and protein fuel can only be measured by sacrificing individuals or by use of technically complex methods, scoring systems were invented to estimate fat and protein fuel of birds in the field. The visible subcutaneous fat deposits and the thickness of the flight muscles are each scored on an ordinal scale but these scales do not correspond linearly to fat and protein fuel within species, which is needed for analyses such as flight range estimates. We developed an anova ‐type model to estimate fat and protein fuel from fat scores (FS) and muscle scores (MS) along with total mass and a size measurement. Using data from 11 337 individuals of eight passerine species (Common Nightingale Luscinia megarhynchos, Eurasian Reed Warbler Acrocephalus scirpaceus, Melodious Warbler Hippolais polyglotta, Willow Warbler Phylloscopus trochilus, Orphean Warbler Sylvia hortensis, Garden Warbler Sylvia borin, Common Whitethroat Sylvia communis, Subalpine Warbler Sylvia cantillans) mist‐netted in Mauritania, West Africa, we tested for independence of FS and MS and for variation in the relationship between scores and associated mass in response to physiological state. FS, MS and third primary length (size) explained variation in body mass of all eight species analysed (R2: 0.56–0.77). The parameter estimates of the model showed that fat and protein fuel increased monotonically with increasing fat and muscle scores. In two species we found small differences in the estimates between physiological states (seasons). We evaluated our model by comparing the predicted body mass of birds with both FS and MS equal to 0 with the mean body mass of individuals mist‐netted with both scores equal to zero. The values were very close. The amount of fat extracted from dead Garden and Willow Warblers was within the range of predicted fat fuel derived from the model. We conclude that our model is a useful non‐invasive method to estimate simultaneously mean fat and protein fuel of small passerines and we provide recommendations on its use.  相似文献   
119.
The BRAIN project recently announced by the president Obama is the reflection of unrelenting human quest for cracking the brain code, the patterns of neuronal activity that define who we are and what we are. While the Brain Activity Mapping proposal has rightly emphasized on the need to develop new technologies for measuring every spike from every neuron, it might be helpful to consider both the theoretical and experimental aspects that would accelerate our search for the organizing principles of the brain code. Here we share several insights and lessons from the similar proposal, namely, Brain Decoding Project that we initiated since 2007. We provide a specific example in our initial mapping of real-time memory traces from one part of the memory circuit, namely, the CA1 region of the mouse hippocampus. We show how innovative behavioral tasks and appropriate mathematical analyses of large datasets can play equally, if not more, important roles in uncovering the specific-to-general feature-coding cell assembly mechanism by which episodic memory, semantic knowledge, and imagination are generated and organized. Our own experiences suggest that the bottleneck of the Brain Project is not only at merely developing additional new technologies, but also the lack of efficient avenues to disseminate cutting edge platforms and decoding expertise to neuroscience community. Therefore, we propose that in order to harness unique insights and extensive knowledge from various investigators working in diverse neuroscience subfields, ranging from perception and emotion to memory and social behaviors, the BRAIN project should create a set of International and National Brain Decoding Centers at which cutting-edge recording technologies and expertise on analyzing large datasets analyses can be made readily available to the entire community of neuroscientists who can apply and schedule to perform cutting-edge research.  相似文献   
120.
In nocturnal treefrogs, mate choice implies the use of acoustic and visual signals. Multimodality is suspected to have evolved for either information redundancy or information complementariness. It is essential to explore multimodality in a natural context to understand the selection pressures operating on the signals. In the present study, we investigated calling and coloration in relation to male biometry and condition in four populations of European treefrog (Hyla arborea) varying in size and genetic isolation. We compared the signal intensity between core and satellite populations to estimate the impact of genetic diversity on male secondary sexual traits. The results obtained show important regional variations in both traits, likely as a result of local adaptations. Call and coloration are weakly correlated within an individual, implying that these traits likely convey different information about the signaller's identity or quality, thus supporting the hypothesis of complementariness of multiple messages. By contrast to the experimental evidence, we find that call and coloration are not related to male condition (as estimated by the residual of mass over size), suggesting that the condition‐dependence of these traits may be mediated by complex mechanisms not accurately reflected by the chosen estimator. Finally, male call and colour phenotypes present no robust pattern of variation with isolation status, probably because of variation in local selective pressures and in history of population dynamics. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 633–647.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号