首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   40篇
  国内免费   2篇
  2017年   1篇
  2015年   5篇
  2014年   5篇
  2013年   6篇
  2012年   8篇
  2011年   11篇
  2010年   11篇
  2009年   5篇
  2008年   7篇
  2007年   11篇
  2006年   10篇
  2005年   9篇
  2004年   12篇
  2003年   9篇
  2002年   5篇
  2001年   6篇
  2000年   12篇
  1999年   9篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   7篇
  1991年   3篇
  1990年   11篇
  1989年   8篇
  1988年   4篇
  1987年   6篇
  1986年   5篇
  1985年   3篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   5篇
  1978年   4篇
  1977年   3篇
  1976年   5篇
  1975年   4篇
  1974年   4篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
  1969年   1篇
  1968年   3篇
排序方式: 共有240条查询结果,搜索用时 15 毫秒
101.
Lymphocyte membrane potential assessed with fluorescent probes   总被引:33,自引:0,他引:33  
The membrane potential of mouse spleen lymphocytes has been assessed with two fluorescent probes. 3,3'-Dipropylthiadicarbocyanine (diS-C3-(5)) was used for most of the experiments. Solutions with high K+ concentrations depolarised the cells. Valinomycin, an inophore which adds a highly K+-selective permeability membranes, slightly hyperpolarised cells in standard (6 mM K+) solution, and in 145 mM K+ solution produced a slight additional depolarisation. These findings indicate a membrane whose permeability is relatively selective for K+. Very small changes in potential were seen when choline replaced Na+, or gluconate replaced Cl-, supporting the idea of K+ selectivity. The resting potential could be estimated from the K+ concentration gradient at which valinomycin did not change the potential-the "valinomycin null point" - and under the conditions used the resting potential was approx.-60 mV. B cell-enriched suspensions were prepared either from the spleens of nu/nu mice or by selective destruction of T cells in mixed cell populations. The membrane potential of these cells was similar to that estimated for the mixed cells. In solution with no added K+, diS-C3-(5) itself appeared to depolarise the lymphocytes, in a concentration dependent manner. With the 100 nM dye normally used, the membrane potential in K+-free solution was around -45 mV, and 500 nM dye almost completely depolarised the cells. In standard solution quinine depolarised the cells. Valinomycin could still depolarise these cells indicating that depolarisation had not been due to dissipation of the K+ gradient. Since in K+-free solution diS-C3-(5) blocks the Ca2+-activated K+ channels in human red blood cell ghosts and quinine also blocks this K+ channel it is suggested that the resting lymphocyte membrane may have a similar Ca2+-activated K+ permeability channel. Because of the above mentioned effect of diS-C3-(5) and other biological side effects, such as inhibition of B cell capping, a chemically distinct fluorescent probe of membrane potential, bis(1,3-diethylthiobarbiturate)-trimethineoxonol was used to support the diS-C3-(5) data. This new probe proved satisfactory except that it formed complexes with valinomycin, ruling out the use of this ionophore. Results with the oxonol on both mixed lymphocytes and B cell-enriched suspensions gave confirmation of the conclusions from diS-C3-(5) experiments and indicated that despite its biological side effects, diS-C3-(5) could still give valid assessment of membrane potential.  相似文献   
102.
A mixed culture of bacteria grown in a bioreactor with methane as a carbon and energy source rapidly oxidized trichloroethylene and chloroform. The most abundant organism was a crescent-shaped bacterium that bound the fluorescent oligonucleotide signature probes that specifically hybridize to serine pathway methylotrophs. The 5S rRNA from this bacterium was found to be 93.5% homologous to the Methylosinus trichosporium OB3b 5S RNA sequence. A type II methanotrophic bacterium, isolated in pure culture from the bioreactor, synthesized soluble methane monooxygenase during growth in a copper-limited medium and was also capable of rapid trichloroethylene oxidation. The bacterium contained the gene that encodes the soluble methane monooxygenase B component on an AseI restriction fragment identical in size to a restriction fragment present in AseI digests of DNA from bacteria in the mixed culture. The sequence of the 16S rRNA from the pure culture was found to be 92 and 94% homologous to the 16S rRNAs of M. trichosporium OB3b and M. sporium, respectively. Both the pure and mixed cultures oxidized naphthalene to naphthol, indicating the presence of soluble methane monooxygenase. The mixed culture also synthesized soluble methane monooxygenase, as evidenced by the presence of proteins that cross-reacted with antibodies prepared against purified soluble methane monooxygenase components from M. trichosporium OB3b on Western blots (immunoblots). It was concluded that a type II methanotrophic bacterium phylogenetically related to Methylosinus species synthesizes soluble methane monooxygenase and is responsible for trichloroethylene oxidation in the bioreactor.  相似文献   
103.
Familial hemiplegic migraine type 1 (FHM1) arises from missense mutations in the gene encoding alpha1A, the pore-forming subunit of P/Q-type calcium channels. The nature of the channel disorder is fundamental to the disease, yet is not well understood. We studied how the most prevalent FHM1 mutation, a threonine to methionine substitution at position 666 (TM), affects both ionic current and gating current associated with channel activation, a previously unexplored feature of P/Q channels. Whole-cell currents were measured in HEK293 cells expressing channels containing either wild-type (WT) or TM alpha1A. Calcium currents were significantly smaller in cells expressing TM channels, consistent with previous reports. In contrast, surface expression of TM channels, measured by immunostaining against an extracellular epitope, was not decreased, and Western blots demonstrated that TM alpha1A subunits were expressed as full-length proteins. WT and TM gating currents were isolated by replacing Ca2+ with the nonpermeant cation La3+. The gating currents generated by the mutant channels were one-third that of WT, a deficiency sufficient to account for the observed attenuation in calcium current; the remaining gating current was no different in kinetics or voltage dependence. Thus, the decreased calcium influx seen with TM channels can be attributed to a reduced number of channels available to undergo the voltage-dependent conformational changes needed for channel opening, not to fewer channel proteins expressed on the cell surface. This identification of an intrinsic defect in FHM1 mutant channels helps explain their impact on neurotransmission when they occupy type-specific slots for P/Q channels at central nerve terminals.  相似文献   
104.
Fluorescence resonance energy transfer (FRET) from cyan to yellow fluorescent proteins (CFP/YFP) is a well-established method to monitor protein-protein interactions or conformational changes of individual proteins. But protein functions can be perturbed by fusion of large tags such as CFP and YFP. Here we use G protein-coupled receptor (GPCR) activation in living cells as a model system to compare YFP with the small, membrane-permeant fluorescein derivative with two arsen-(III) substituents (fluorescein arsenical hairpin binder; FlAsH) targeted to a short tetracysteine sequence. Insertion of CFP and YFP into human adenosine A(2A) receptors allowed us to use FRET to monitor receptor activation but eliminated coupling to adenylyl cyclase. The CFP/FlAsH-tetracysteine system gave fivefold greater agonist-induced FRET signals, similar kinetics (time constant of 66-88 ms) and perfectly normal downstream signaling. Similar results were obtained for the mouse alpha(2A)-adrenergic receptor. Thus, FRET from CFP to FlAsH reports GPCR activation in living cells without disturbing receptor function and shows that the small size of the tetracysteine-biarsenical tag can be decisively advantageous.  相似文献   
105.
A guide to choosing fluorescent proteins   总被引:2,自引:0,他引:2  
The recent explosion in the diversity of available fluorescent proteins (FPs) promises a wide variety of new tools for biological imaging. With no unified standard for assessing these tools, however, a researcher is faced with difficult questions. Which FPs are best for general use? Which are the brightest? What additional factors determine which are best for a given experiment? Although in many cases, a trial-and-error approach may still be necessary in determining the answers to these questions, a unified characterization of the best available FPs provides a useful guide in narrowing down the options.  相似文献   
106.
Summary The kinetics of ionic current mechanisms in excitable membranes are analyzed. It is assumed that there are voltage-dependent reactions occurring in the membrane which are independent of the flow of ionic current. The experimental evidence for this assumption is reviewed in the light of more recent results on the kinetics of conductance changes in cardiac membranes. Rate equations are then obtained using transition state theory and assuming that each reaction is rate limited by only one energy barrier. These equations give simple exponential functions for the voltage dependence of the rates. More complex functions may be obtained by assuming that more than one energy barrier is rate limiting. The single-barrier equations are used to estimate the energies of formation of the transition state. In most cases, the entropy of formation is positive but there is no systematic order in the estimated enthalpies. These results are contrasted with those for the ion permeation process itself which normally has a negative entropy of activation. This contrast reinforces the assumption that the reactions controlling membrane permeability are distinct from the ion permeation process itself. The significance of the positive entropy of formation of the transition state in the permeability reactions is discussed, and it is suggested that the membrane structures underlying these reactions may change their degree of hydration during the formation of the transition state.  相似文献   
107.
The existence of a membrane system located at one of the poles of the cell is confirmed in the case ofNitrobacter winogradskyi. Additional information on the structure of this system is presented. Elementary particles with diameters of 90 – 100 Å are embedded on a layer of membrane protein. Identification of the membrane system as the location of nitrite oxidation was achieved by a combination of differential spectrophotometry and electron microscopic study of membrane fragments separated by density gradient centrifugation. The cytochrome chain responsible for nitrite oxidation appears to be located in fragments of the membrane system.Prominent morphological features ofNitrobacter winogradskyi are the high contents in poly--hydroxybutyrate and polyphosphate granules.  相似文献   
108.
The methanotroph Methylosinus trichosporium OB3b, a type II methanotroph, degraded trichloroethylene at rates exceeding 1.2 mmol/h per g (dry weight) following the appearance of soluble methane monooxygenase in continuous and batch cultures. Cells capable oxidizing trichloroethylene contained components of soluble methane monooxygenase as demonstrated by Western blot (immunoblot) analysis with antibodies prepared against the purified enzyme. Growth of cultures in a medium containing 0.25 microM or less copper sulfate caused derepression of the synthesis of soluble methane monooxygenase. In these cultures, the specific rates of methane and methanol oxidation did not change during growth, while trichloroethylene oxidation increased with the appearance of soluble methane monooxygenase. M. trichosporium OB3b cells that contained soluble methane monooxygenase also degraded vinyl chloride, 1,1-dichloroethylene, cis-1,2-dichloroethylene, and trans-1,2-dichloroethylene.  相似文献   
109.
Planar lipid bilayer recordings were used to study Ca channels from bovine cardiac sarcolemmal membranes. Ca channel activity was recorded in the absence of nucleotides or soluble enzymes, over a range of membrane potentials and ionic conditions that cannot be achieved in intact cells. The dihydropyridine-sensitive L-type Ca channel, studied in the presence of Bay K 8644, was identified by a detailed comparison of its properties in artificial membranes and in intact cells. L-type Ca channels in bilayers showed voltage dependence of channel activation and inactivation, open and closed times, and single-channel conductances in Ba2+ and Ca2+ very similar to those found in cell-attached patch recordings. Open channels were blocked by micromolar concentrations of external Cd2+. In this cell-free system, channel activity tended to decrease during the course of an experiment, reminiscent of Ca2+ channel "rundown" in whole-cell and excised-patch recordings. A purely voltage-dependent component of inactivation was observed in the absence of Ca2+ stores or changes in intracellular Ca2+. Millimolar internal Ca2+ reduced unitary Ba2+ influx but did not greatly increase the rate or extent of inactivation or the rate of channel rundown. In symmetrical Ba2+ solutions, unitary conductance saturated as the Ba2+ concentration was increased up to 500 mM. The bilayer recordings also revealed activity of a novel Ca2+-permeable channel, termed "B-type" because it may contribute a steady background current at negative membrane potentials, which is distinct from L-type or T-type Ca channels previously reported. Unlike L-type channels, B-type channels have a small unitary Ba2+ conductance (7 pS), but do not discriminate between Ba2+ and Ca2+, show no obvious sensitivity to Bay K 8644, and do not run down. Unlike either L- or T-type channels, B-type channels did not require a depolarization for activation and displayed mean open times of greater than 100 ms.  相似文献   
110.
Rhythmic activity in cardiac Purkinje fibers can be analyzed by using the voltage clamp technique to study pacemaker currents. In normally polarized preparations, pacemaker activity can be generated by two distinct ionic mechanisms. The standard pacemaker potential (phase 4 depolarization) involves a slow potassium current, IK2. Following action potential repolarization, the IK2 channels slowly deactivate and thus unmask a steady background inward current. The resulting net inward current causes the slow pacemaker depolarization. Epinephrine accelerates the diastolic depolarization by promoting more complete and more rapid deactivation of IK2 over the pacemaker range of potentials. The catecholamine acts rather selectively on the voltage dependence of the gating mechanism, without altering the basic character of the pacemaker process. The nature of the pacemaker depolarization is altered by intoxication with high concentrations of cardiac glycosides or aglycones. These compounds promote spontaneous impulses in Purkinje fibers by a mechanism that supersedes the ordinary IK2 pacemaker. The digitalis-induced depolarization is generated by a transient inward current that is either absent or very small in untreated preparations. The transient inward current is largely carried by sodium ions. Its unusual time course probably reflects an underlying subcellular event, the oscillatory release of calcium ions from intracellular stores.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号