全文获取类型
收费全文 | 1624篇 |
免费 | 116篇 |
国内免费 | 5篇 |
专业分类
1745篇 |
出版年
2022年 | 14篇 |
2021年 | 26篇 |
2020年 | 10篇 |
2019年 | 14篇 |
2018年 | 21篇 |
2017年 | 10篇 |
2016年 | 36篇 |
2015年 | 84篇 |
2014年 | 86篇 |
2013年 | 102篇 |
2012年 | 121篇 |
2011年 | 113篇 |
2010年 | 63篇 |
2009年 | 64篇 |
2008年 | 94篇 |
2007年 | 95篇 |
2006年 | 84篇 |
2005年 | 72篇 |
2004年 | 72篇 |
2003年 | 47篇 |
2002年 | 50篇 |
2001年 | 40篇 |
2000年 | 42篇 |
1999年 | 37篇 |
1998年 | 13篇 |
1997年 | 16篇 |
1996年 | 12篇 |
1995年 | 11篇 |
1994年 | 10篇 |
1993年 | 8篇 |
1992年 | 29篇 |
1991年 | 23篇 |
1990年 | 27篇 |
1989年 | 19篇 |
1988年 | 17篇 |
1987年 | 22篇 |
1986年 | 13篇 |
1985年 | 9篇 |
1984年 | 9篇 |
1983年 | 12篇 |
1982年 | 16篇 |
1981年 | 12篇 |
1980年 | 4篇 |
1979年 | 10篇 |
1978年 | 9篇 |
1977年 | 8篇 |
1976年 | 5篇 |
1975年 | 5篇 |
1974年 | 8篇 |
1972年 | 4篇 |
排序方式: 共有1745条查询结果,搜索用时 0 毫秒
51.
Kuemmerle J Jiang S Tseng B Kasibhatla S Drewe J Cai SX 《Bioorganic & medicinal chemistry》2008,16(8):4233-4241
We have reported the discovery of gambogic acid (GA) as a potent apoptosis inducer and the identification of transferrin receptor as its molecular target. In order to understand the basic pharmacophore of GA for inducing apoptosis and to discover novel and simplified derivatives as potential anti-cancer agents, we explored the synthesis of caged 2,3,3a,7a-tetrahydro-3,6-methanobenzofuran-7(6H)-ones (4-oxatricyclo[4.3.1.0]decan-2-ones). Three types of 2,3,3a,7a-tetrahydro-3,6-methanobenzofuran-7(6H)-ones based on xanthone, 2-phenylchromene-4-one and benzophenone, were synthesized using a Claisen/Diels-Alder reaction cascade. All the reactions produced the targeted caged compound as well as its neo-isomer. The caged compounds based on xanthone and 2-phenylchromene-4-one were found to maintain the apoptosis inducing and cell growth inhibiting activity of GA, although with less potency. The caged compounds based on benzophenone were found to be inactive. Our study determined the minimum structure of GA for its apoptosis inducing activity, which could lead to the development of simple derivatives as potential anti-cancer drugs. 相似文献
52.
Yih-Yuan Chen Jia-Ru Chang Shu-Chen Kuo Fan-Chen Tseng Wei-Chen Huang Tsi-Shu Huang Yao-Shen Chen Tzong-Shi Chiueh Jun-Ren Sun Ih-Jen Su Horng-Yunn Dou 《PloS one》2015,10(1)
Background
We present the first comprehensive analysis of Mycobacterium tuberculosis (MTB) isolates circulating in southern Taiwan. In this 9-year population-based study, the TB situation in the Kaohsiung region was characterized by genotypic analysis of 421 MTB isolates.Methods
All 421 isolates of MTB were analyzed by spoligotyping and MIRU-VNTR typing. Drug-resistance patterns were also analyzed.Results
The percentage of EAI (East African-Indian) strains increased across sampling years (2000–2008) in southern Taiwan, whereas the proportion of Beijing lineages remained unchanged. Clustering was more frequent with EAI genotype infections (odds ratio = 3.6, p<0.0001) when compared to Beijing genotypes. Notably, MTB resistance to streptomycin (STR) had significantly increased over time, but resistance to other antibiotics, including multidrug resistance, had not. Three major genes (gidB, rpsL and rrs) implicated in STR resistance were sequenced and specific mutations identified.Conclusions
This study revealed that EAI strains were highly transmissible and that STR resistance has increased between 2000 and 2008 in Kaohsiung, Taiwan. 相似文献53.
Tight clustering: a resampling-based approach for identifying stable and tight patterns in data 总被引:1,自引:0,他引:1
In this article, we propose a method for clustering that produces tight and stable clusters without forcing all points into clusters. The methodology is general but was initially motivated from cluster analysis of microarray experiments. Most current algorithms aim to assign all genes into clusters. For many biological studies, however, we are mainly interested in identifying the most informative, tight, and stable clusters of sizes, say, 20-60 genes for further investigation. We want to avoid the contamination of tightly regulated expression patterns of biologically relevant genes due to other genes whose expressions are only loosely compatible with these patterns. "Tight clustering" has been developed specifically to address this problem. It applies K-means clustering as an intermediate clustering engine. Early truncation of a hierarchical clustering tree is used to overcome the local minimum problem in K-means clustering. The tightest and most stable clusters are identified in a sequential manner through an analysis of the tendency of genes to be grouped together under repeated resampling. We validated this method in a simulated example and applied it to analyze a set of expression profiles in the study of embryonic stem cells. 相似文献
54.
Yi-Hsuan Lin Yi-Chun Chen Yen-Han Tseng Ming-Hwai Lin Shinn-Jang Hwang Tzeng-Ji Chen Li-Fang Chou 《PloS one》2013,8(4)
Aims
The palliative care has spread rapidly worldwide in the recent two decades. The development of hospice services in rural areas usually lags behind that in urban areas. The aim of our study was to investigate whether the urban-rural disparity widens in a country with a hospital-based hospice system.Methods
From the nationwide claims database within the National Health Insurance in Taiwan, admissions to hospices from 2000 to 2006 were identified. Hospices and patients in each year were analyzed according to geographic location and residence.Results
A total of 26,292 cancer patients had been admitted to hospices. The proportion of rural patients to all patients increased with time from 17.8% in 2000 to 25.7% in 2006. Although the numbers of beds and the utilizations in both urban and rural hospices expanded rapidly, the increasing trend in rural areas was more marked than that in urban areas. However, still two-thirds (898/1,357) of rural patients were admitted to urban hospices in 2006.Conclusions
The gap of hospice utilizations between urban and rural areas in Taiwan did not widen with time. There was room for improvement in sufficient supply of rural hospices or efficient referral of rural patients. 相似文献55.
56.
The karyotypes of 17 species in the subgenusDrosophila are compared according to their taxonomical relationships. Although closely related species often possess similar karyotypes, the karyotypes diverge considerably within the subgenus. Thus extensive chromosome rearrangements did occur during the speciation. Species with higher chromosome numbers do not necessarily have higher average of total chromosome length per cell. 相似文献
57.
Winslow R. Briggs Tong-Seung Tseng Hae-Young Cho Trevor E. Swartz Stuart Sullivan Roberto A. Bogomolni Eirini Kaiserli John M. Christie 《植物学报(英文版)》2007,49(1):4-10
The phototropins phot1 and phot2 are plant blue-light receptors that mediate phototropism, chloroplast movements, stomatal opening, leaf expansion, the rapid Inhibition of hypocotyl growth in etiolated seedlings, and possibly solar tracking by leaves in those species in which It occurs. The phototroplns are plasma membrane-associated hydrophilic proteins with two chromophore domains (designated LOV1 and LOV2 for their resemblance to domains In other signaling proteins that detect light, oxygen, or voltage) in their Nterminal half and a classic serine/threonlne kinase domain in their C-terminal half. Both chromophore domains bind flavin mononucleotide (FMN) and both undergo light-activated formation of a covalent bond between a nearby cystelne and the C(4a) carbon of the FMN to form the signaling state. LOV2-cystelnyl adduct formation leads to the release downstream of a tightly bound amphlpathlc α-helix, a step required for activation of the klnase function. This cysteinyl adduct then slowly decays over a matter of seconds or minutes to return the photoreceptor chromophore modules to their ground state. Functional LOV2 is required for light-activated phosphorylation and for various blue-light responses mediated by the phototroplns. The function of LOV1 is still unknown, although It may serve to modulate the signal generated by LOV2. The LOV domain Is an ancient chromophore module found In a wide range of otherwise unrelated proteins In fungi and prokaryotes, the latter Including cyanobacterla, eubacterla, and archaea. Further general reviews on the phototropins are those by Celaya and Liscum (2005) and Christie and Briggs (2005). 相似文献
58.
Expression and self-assembly of norwalk virus capsid protein from venezuelan equine encephalitis virus replicons 总被引:2,自引:0,他引:2 下载免费PDF全文
Baric RS Yount B Lindesmith L Harrington PR Greene SR Tseng FC Davis N Johnston RE Klapper DG Moe CL 《Journal of virology》2002,76(6):3023-3030
The Norwalk virus (NV) capsid protein was expressed using Venezuelan equine encephalitis virus replicon particles (VRP-NV1). VRP-NV1 infection resulted in large numbers of recombinant NV-like particles that were primarily cell associated and were indistinguishable from NV particles produced from baculoviruses. Mutations located in the N-terminal and P1 domains of the NV capsid protein ablated capsid self-assembly in mammalian cells. 相似文献
59.
This paper introduces the method of live-cell multiple-particle-tracking microrheology (MPTM), which quantifies the local mechanical properties of living cells by monitoring the Brownian motion of individual microinjected fluorescent particles. Particle tracking of carboxylated microspheres imbedded in the cytoplasm produce spatial distributions of cytoplasmic compliances and frequency-dependent viscoelastic moduli. Swiss 3T3 fibroblasts are found to behave like a stiff elastic material when subjected to high rates of deformations and like a soft liquid at low rates of deformations. By analyzing the relative contributions of the subcellular compliances to the mean compliance, we find that the cytoplasm is much more mechanically heterogeneous than reconstituted actin filament networks. Carboxylated microspheres embedded in cytoplasm through endocytosis and amine-modified polystyrene microspheres, which are microinjected or endocytosed, often show directed motion and strong nonspecific interactions with cytoplasmic proteins, which prevents computation of local moduli from the microsphere displacements. Using MPTM, we investigate the mechanical function of alpha-actinin in non-muscle cells: alpha-actinin-microinjected cells are stiffer and yet mechanically more heterogeneous than control cells, in agreement with models of reconstituted cross-linked actin filament networks. MPTM is a new type of functional microscopy that can test the local, rate-dependent mechanical and ultrastructural properties of living cells. 相似文献
60.
Nilda Roma Burgos Vijay Singh Te Ming Tseng Howard Black Nelson D. Young Zhongyun Huang Katie E. Hyma David R. Gealy Ana L. Caicedo 《Plant physiology》2014,166(3):1208-1220
The use of herbicide-resistant (HR) Clearfield rice (Oryza sativa) to control weedy rice has increased in the past 12 years to constitute about 60% of rice acreage in Arkansas, where most U.S. rice is grown. To assess the impact of HR cultivated rice on the herbicide resistance and population structure of weedy rice, weedy samples were collected from commercial fields with a history of Clearfield rice. Panicles from each weedy type were harvested and tested for resistance to imazethapyr. The majority of plants sampled had at least 20% resistant offspring. These resistant weeds were 97 to 199 cm tall and initiated flowering from 78 to 128 d, generally later than recorded for accessions collected prior to the widespread use of Clearfield rice (i.e. historical accessions). Whereas the majority (70%) of historical accessions had straw-colored hulls, only 30% of contemporary HR weedy rice had straw-colored hulls. Analysis of genotyping-by-sequencing data showed that HR weeds were not genetically structured according to hull color, whereas historical weedy rice was separated into straw-hull and black-hull populations. A significant portion of the local rice crop genome was introgressed into HR weedy rice, which was rare in historical weedy accessions. Admixture analyses showed that HR weeds tend to possess crop haplotypes in the portion of chromosome 2 containing the ACETOLACTATE SYNTHASE gene, which confers herbicide resistance to Clearfield rice. Thus, U.S. HR weedy rice is a distinct population relative to historical weedy rice and shows modifications in morphology and phenology that are relevant to weed management.Weedy rice (Oryza sativa), a conspecific weed of cultivated rice, is a global threat to rice production (Delouche et al., 2007). Classified as the same species as cultivated rice, it is highly competitive (Diarra et al., 1985; Pantone and Baker, 1991; Burgos et al., 2006), difficult to control without damaging cultivated rice, and can cause almost total crop failure (Diarra et al., 1985). The competition of cultivated rice with weedy rice can lead to yield losses from less than 5% to 100% (Kwon et al., 1991; Watanabe et al., 2000; Chen et al., 2004; Ottis et al., 2005; Shivrain et al., 2009b). Besides being difficult to control, weedy rice persists in rice fields because of key weedy traits, including variable emergence (Shivrain et al., 2009b), high degree of seed shattering (Eleftherohorinos, et al., 2002; Thurber et al., 2010), high diversity in seed dormancy (Do Lago, 1982; Noldin, 1995; Vidotto and Ferrero, 2000; Burgos et al., 2011; Tseng et al., 2013), and its seed longevity in soil (Goss and Brown, 1939). Weedy rice is a problem mainly in regions with large farm sizes where direct-seeded rice culture is practiced (Delouche et al., 2007). It is not a major problem in transplanted rice culture, where roguing weeds is possible and hand labor is available. The severity of the problem has increased in recent decades because of the significant shift to direct seeding from transplanting (Pandey and Velasco, 2002; Rao et al., 2007; Chauhan et al., 2013), which is driven by water scarcity (Kummu et al., 2010; Turral et al., 2011), increasing labor costs, and migration of labor to urban areas (Grimm et al., 2008).The herbicide-resistant (HR) Clearfield rice technology (Croughan, 2003) provides an option to control weedy rice in rice using imidazolinone herbicides, in particular, imazethapyr. Imidazolinones belong to group 2 herbicides, also known as ACETOLACTATE SYNTHASE (ALS) inhibitors. Examples of herbicides in this group are imazamox, imazapic, imazaquin, and imazethapyr. Developed through mutagenesis of the ALS locus (Croughan, 1998), Clearfield rice was first commercialized in 2002 in the southern U.S. rice belt (Tan et al., 2005). Low levels of natural hybridization are known to occur between the crop and weedy rice. Gene flow generally ranges from 0.003% to 0.25% (Noldin et al., 2002; Song et al., 2003; Messeguer et al., 2004; Gealy, 2005; Shivrain et al., 2007, 2008). After the adoption of Clearfield technology, resistant weedy outcrosses were soon detected in commercial fields (Fig. 1), generally after two cropping seasons of Clearfield rice, where escaped weedy rice was able to produce seed (Zhang et al., 2006; Burgos et al., 2007, 2008). Similar observations have been reported outside the United States, in other regions adopting the technology (Gressel and Valverde, 2009; Busconi et al., 2012).Open in a separate windowFigure 1.Suspected herbicide-resistant weedy rice in a rice field previously planted with Clearfield rice along the Mississippi River Delta in Arkansas. More than 10 morphotypes of weedy rice were observed in this field, with different maturity periods. In the foreground is a typical weedy rice with pale green leaves; the rice cultivar has dark green leaves. The inset shows a weedy morphotype that matured earlier than cultivated rice.Despite this complication, the adoption of Clearfield rice technology is increasing, albeit at a slower pace than that of glyphosate-resistant crops. After a decade of commercialization, 57% of the rice area in Arkansas was planted with Clearfield rice cultivars in 2013 (J. Hardke, personal communication). Clearfield technology has been very successful at controlling weedy rice, and polls among rice growers suggest that farmers have kept the problem of HR weeds in check by following the recommended stewardship practices (Burgos et al., 2008). The most notable of these are (1) implementation of herbicide programs that incorporate all possible modes of action available for rice production; (2) ensuring maximum efficacy of the herbicides used; (3) preventing seed production from escaped weedy rice, remnant weedy rice after crop harvest, or volunteer rice and weedy rice in the next crop cycle; (4) rotating Clearfield rice with other crops to break the weedy rice cycle; and (5) practicing zero tillage to avoid burying HR weedy rice seed (Burgos et al., 2008).Clearfield rice has gained a foothold in Asia, where rice cultivation originated (Londo and Schaal, 2007; Zong et al., 2007). Clearfield rice received government support for commercialization in Malaysia in 2010 (Azmi et al., 2012) because of the severity of the weedy rice problem there. Dramatic increases in rice yields (from 3.5 to 7 metric tons ha−1) were reported in Malaysia where Clearfield rice was planted (Sudianto et al., 2013). However, the risk of gene flow and evolution of resistant weedy rice populations is high in the tropics, where up to three rice crops are planted each year, and freezing temperatures, which would reduce the density of volunteer plants, do not occur.In the United States, where Clearfield technology originated and has been used for the longest time, the interaction between HR cultivated rice and weedy rice is not yet fully understood. Two main populations of weedy rice are known to occur in the southern United States and can be found in the same cultivated rice fields. These populations are genetically differentiated, are largely distinct at the phenotypic level, and have separate evolutionary origins (Reagon et al., 2010). One group tends to have straw-colored hulls and is referred to as the SH population; a second group tends to have black-colored hulls and awns and is referred to as the BHA population (Reagon et al., 2010). Genomic evidence suggests that both groups descended from cultivated ancestors but not from the tropical japonica subgroup varieties that are grown commercially in the United States. Instead, the SH group evolved from indica, a subgroup of rice commonly grown in the lowland tropics, and the BHA group descended from aus, a related cultivated subgroup typically grown in Bangladesh and the West Bengal region (Reagon et al., 2010). Weed-weed and weed-crop hybrids are also known to occur, but prior to Clearfield commercialization, these hybrids had occurred at low frequency (Reagon et al., 2010; Gealy et al., 2012). With the advent and increased adoption of Clearfield cultivars, the impact on U.S. weedy rice population structure and the prevalence of the SH and BHA groups are unknown.Efforts to predict the possible consequences of HR or genetically modified rice on weedy rice have been a subject of discussion for many years. Both weedy rice and cultivated rice are primarily self-fertilizing, but, as mentioned above, low levels of gene flow are known to occur. Additional environmental and intrinsic genetic factors can act as prezygotic and postzygotic mating barriers between cultivated and weedy rice and influence the possibility and levels of gene flow between these groups (Craig et al., 2014; Thurber et al., 2014). However, once gene flow occurs between cultivated and weedy rice, and if the resulting hybrids are favored by selection, the resulting morphological, genetic, and physiological changes in weedy rice populations can alter the way that weedy rice evolves and competes. For example, herbicide-resistant weed outcrosses in an experimental field have been observed to be morphologically diverse (Shivrain et al., 2006), with some individuals carrying major weedy traits and well adapted to rice agriculture. Such weedy plants could be more problematic than their normal weedy counterparts. Thus, introgression of crop genes into weedy populations has the potential to change the population dynamic, genetic structure, and morphological profile of weedy plants. This, in turn, must alter our crop management practices. To increase our understanding of the impact of HR rice on the evolution of weedy rice, in this article we aim to (1) assess the frequency of herbicide resistance in weedy rice in southern U.S. rice fields with a history of Clearfield use; (2) characterize the weedy attributes of resistant populations; and (3) determine the genetic origins of herbicide-resistant weeds in U.S. fields. 相似文献