首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   911篇
  免费   89篇
  国内免费   9篇
  2022年   7篇
  2021年   24篇
  2020年   6篇
  2019年   10篇
  2018年   9篇
  2017年   9篇
  2016年   22篇
  2015年   36篇
  2014年   48篇
  2013年   37篇
  2012年   75篇
  2011年   56篇
  2010年   36篇
  2009年   30篇
  2008年   35篇
  2007年   51篇
  2006年   34篇
  2005年   34篇
  2004年   38篇
  2003年   28篇
  2002年   31篇
  2001年   43篇
  2000年   27篇
  1999年   14篇
  1998年   4篇
  1997年   11篇
  1996年   8篇
  1994年   5篇
  1993年   3篇
  1992年   21篇
  1991年   24篇
  1990年   19篇
  1989年   16篇
  1988年   14篇
  1987年   20篇
  1986年   9篇
  1985年   15篇
  1984年   6篇
  1983年   9篇
  1982年   9篇
  1981年   8篇
  1980年   5篇
  1979年   13篇
  1978年   4篇
  1977年   4篇
  1976年   11篇
  1974年   6篇
  1973年   5篇
  1970年   4篇
  1969年   4篇
排序方式: 共有1009条查询结果,搜索用时 15 毫秒
81.
82.
While the ability of stem cells to switch lineages has been suggested, the route(s) through which this may happen is unclear. To date, the best characterized adult stem cell population considered to possess transdifferentiation capacity is BM-MSCs (bone marrow mesenchymal stem cells). We investigated whether BM-MSCs that had terminally differentiated into the neural or epithelial lineage could be induced to transdifferentiate into the other phenotype in vitro. Our results reveal that neuronal phenotypic cells derived from adult rat bone marrow cells can be switched to epithelial phenotypic cells, or vice versa, by culture manipulation allowing the differentiated cells to go through, first, dedifferentiation and then redifferentiation to another phenotype. Direct transdifferentiation from differentiated neuronal or epithelial phenotype to the other differentiated phenotype cannot be observed even when appropriate culture conditions are provided. Thus, dedifferentiation appears to be a prerequisite for changing fate and differentiating into a different lineage from a differentiated cell population.  相似文献   
83.
Epigallocatechin gallate (EGCG) is a major type of green tea polyphenols and is known to have cancer prevention effect. MicroRNAs (miRNAs) are 19 to 25 nucleotides and are believed to be important in gene regulation. In the present study, the influence of EGCG on the expressions of miRNAs in human cancer cells was investigated as this has not yet been reported. By miRNA microarray analysis, EGCG treatment was found to modify the expressions of some of the miRNAs in human hepatocellular carcinoma HepG2 cells, 13 were up-regulated and 48 were down-regulated. miR-16 is one of the miRNAs up-regulated by EGCG and one of its target genes is confirmed to be the anti-apoptotic protein Bcl-2. EGCG treatment induced apoptosis and down-regulated Bcl-2 in HepG2 cells. Transfection with anti-miR-16 inhibitor suppressed miR-16 expression and counteracted the EGCG effects on Bcl-2 down-regulation and also induction of apoptosis in cells. Results from the present study confirm the role of miR-16 in mediating the apoptotic effect of EGCG and also support the importance of miRNAs in the regulation of the biological activity of EGCG.  相似文献   
84.
85.
?Premise of the study: Polymorphic microsatellite primers were developed in the seagrass Halophila ovalis to investigate genetic variation. ?Methods and Results: Ten polymorphic microsatellite loci were developed in Halophila ovalis. The number of alleles per locus ranged from 2 to 12 across 80 H. ovalis individuals. These loci were successfully amplified in H. minor, and four were monomorphic across 30 individuals. ?Conclusions: These results from four H. ovalis populations and one H. minor population show the broad utility of microsatellite loci in future studies of population genetics. Four distinct alleles were present in H. minor but absent in H. ovalis, indicating potential divergence between them.  相似文献   
86.
Rodent transgenesis and human‐assisted reproductive programs involve multistep handling of preimplantation embryos. The efficacy of production and quality of results from conventionally scheduled programs are limited by temporal constraints other than the quality and quantities of embryos per se. The emergence of vitrification, a water ice‐free cryopreservation technique, as a reliable way to arrest further growth of preimplantation embryos, provides an option to eliminate the time constraint. In this article, current and potential applications of cryopreservation to facilitate laboratory animal experiments, colony management, and human‐assisted reproductive programs are reviewed. Carrier devices developed for vitrification in the last two decades are compared with an emphasis on their physical properties that infer cooling rate of samples and sterility assurance. Biological impacts of improved cryopreservation on preimplantation embryos are also discussed. Birth Defects Research (Part C) 90:163–175, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
87.
A cell line, UMN-PIE-1181, initiated in November, 1981, from embryos of a malathion-resistant strain of Indianmeal moth, Plodia interpunctella, was in the 83rd passage on January 28, 1985. The line consists of single, small, fibroblastlike cells that are polyploid with chromosome numbers ranging from 56 to 180. Growth rate is dependent on seeding density, there being no growth at or below seeding densities of 2 × 1055, ml; optimum growth requires a fetal bovine serum concentration of at least 5%. Twenty-nine isozymes were examined. Five enzymes from the cell lines resolved well and subsequently were compared to enzymes extracted from 4-day-old embryos and other life stages of the insects. Phosphomannose isomerase, malic enzyme, malate dehydrogenase, phosphoglucose isomerase, and glucose-6-phosphate dehydrogenase in extracts from the cultured cells and from the insects had identical patterns. Two bands for glutamate-oxalacetate transaminase, present in the cell line, were not observed in the tissue extracts. Furthermore, lactate dehydrogenase from the cultured cells appeared as four bands but was not detectable in any of the samples run from the various life stages of the insects.  相似文献   
88.
Cyclin A/Cdk2 plays an important role during S and G2/M phases of the eukaryotic cell cycle, but the mechanisms by which it regulates cell cycle events are not fully understood. We have biochemically purified and identified SCAPER, a novel protein that specifically interacts with cyclin A/Cdk2 in vivo. Its expression is cell cycle independent, and it associates with cyclin A/Cdk2 at multiple phases of the cell cycle. SCAPER localizes primarily to the endoplasmic reticulum. Ectopic expression of SCAPER sequesters cyclin A from the nucleus and results specifically in an accumulation of cells in M phase of the cell cycle. RNAi-mediated depletion of SCAPER decreases the cytoplasmic pool of cyclin A and delays the G1/S phase transition upon cell cycle re-entry from quiescence. We propose that SCAPER represents a novel cyclin A/Cdk2 regulatory protein that transiently maintains this kinase in the cytoplasm. SCAPER could play a role in distinguishing S phase- from M phase-specific functions of cyclin A/Cdk2.  相似文献   
89.
90.
RNA interference (RNAi) by means of short hairpin RNA (shRNA) has developed into a powerful tool for loss-of-function analysis in mammalian cells. The principal problem in RNAi experiments is off-target effects, and the most vigorous demonstration of the specificity of shRNA is the rescue of the RNAi effects with a shRNA-resistant target gene. This presents its own problems, including the unpredictable relative expression of shRNA and rescue cDNA in individual cells, and the difficulty in generating stable cell lines. In this report, we evaluated the plausibility of combining the expression of shRNA and rescue cDNA in the same vector. In addition to facilitate the validation of shRNA specificity, this system also considerably simplifies the generation of shRNA-expressing cell lines. Since the compensatory cDNA is under the control of an inducible promoter, stable shRNA-expressing cells can be generated before the knockdown phenotypes are studied by conditionally turning off the rescue protein. Conversely, the rescue protein can be activated after the endogenous protein is completely repressed. This approach is particularly suitable when prolonged expression of either the shRNA or the compensatory cDNA is detrimental to cell growth. This system allows a convenient one-step validation of shRNA and generation of stable shRNA-expressing cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号