首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4811篇
  免费   439篇
  国内免费   4篇
  5254篇
  2022年   44篇
  2021年   80篇
  2020年   26篇
  2019年   39篇
  2018年   63篇
  2017年   48篇
  2016年   114篇
  2015年   243篇
  2014年   250篇
  2013年   313篇
  2012年   435篇
  2011年   380篇
  2010年   202篇
  2009年   180篇
  2008年   236篇
  2007年   247篇
  2006年   231篇
  2005年   215篇
  2004年   198篇
  2003年   174篇
  2002年   162篇
  2001年   148篇
  2000年   139篇
  1999年   108篇
  1998年   55篇
  1997年   39篇
  1996年   43篇
  1995年   30篇
  1994年   32篇
  1993年   31篇
  1992年   70篇
  1991年   70篇
  1990年   59篇
  1989年   61篇
  1988年   58篇
  1987年   60篇
  1986年   37篇
  1985年   20篇
  1984年   31篇
  1983年   22篇
  1982年   14篇
  1981年   18篇
  1980年   13篇
  1979年   27篇
  1978年   24篇
  1977年   15篇
  1976年   17篇
  1975年   19篇
  1974年   23篇
  1973年   22篇
排序方式: 共有5254条查询结果,搜索用时 0 毫秒
911.
Noncanonical Wnt signals control morphogenetic movements during vertebrate gastrulation. Casein kinase I epsilon (CKIvarepsilon) is a Wnt-regulated kinase that regulates Wnt/beta-catenin signaling and has a beta-catenin-independent role(s) in morphogenesis that is poorly understood. Here we report the identification of a CKIvarepsilon binding partner, SIPA1L1/E6TP1, a GAP (GTPase activating protein) of the Rap small GTPase family. We show that CKIvarepsilon phosphorylates SIPA1L1 to reduce its stability and thereby increase Rap1 activation. Wnt-8, which activates CKIvarepsilon, enhances the CKIvarepsilon-dependent phosphorylation and degradation of SIPA1L1. In early Xenopus or zebrafish development, inactivation of the Rap1 pathway results in abnormal gastrulation and a shortened anterior-posterior axis. Although CKIvarepsilon also transduces Wnt/beta-catenin signaling, inhibition of Rap1 does not alter beta-catenin-regulated gene expression. Our data demonstrate a role for CKIvarepsilon in noncanonical Wnt signaling and indicate that Wnt regulates morphogenesis in part through CKIvarepsilon-mediated control of Rap1 signaling.  相似文献   
912.
913.
Huntington disease (HD) is a dominantly inherited neurodegenerative disorder characterized by dysregulation of various genes. Recently, microRNAs (miRNAs) have been reported to be involved in this dysregulation, suggesting that manipulation of appropriate miRNA regulation may have a therapeutic benefit. Here, we report the beneficial effects of miR-196a (miR196a) on HD in cell, transgenic mouse models, and human induced pluripotent stem cells derived from one individual with HD (HD-iPSCs). In the in vitro results, a reduction of mutant HTT and pathological aggregates, accompanying the overexpression of miR-196a, was observed in HD models of human embryonic kidney cells and mouse neuroblastoma cells. In the in vivo model, HD transgenic mice overexpressing miR-196a revealed the suppression of mutant HTT in the brain and also showed improvements in neuropathological progression, such as decreases of nuclear, intranuclear, and neuropil aggregates and late-stage behavioral phenotypes. Most importantly, miR-196a also decreased HTT expression and pathological aggregates when HD-iPSCs were differentiated into the neuronal stage. Mechanisms of miR-196a in HD might be through the alteration of ubiquitin-proteasome systems, gliosis, cAMP response element-binding protein pathway, and several neuronal regulatory pathways in vivo. Taken together, these results show that manipulating miR-196a provides beneficial effects in HD, suggesting the potential therapeutical role of miR-196a in HD.  相似文献   
914.
abstract

The objective of this study was to investigate whether human placental multipotent mesenchymal stromal cell (hPMSC)-derived Slit2 and endothelial cell Roundabout (Robo) receptors are involved in placental angiogenesis. The hPMSC-conditioned medium and human umbilical vein endothelial cells were studied for Slit2 and Robo receptor expression by immunoassay and RT-PCR. The effect of the conditioned medium of hPMSCs with or without Slit2 depletion on endothelial cells was investigated by in vitro angiogenesis using growth factor-reduced Matrigel. hPMSCs express Slit2 and both Robo1 and Robo4 are present in human umbilical vein endothelial cells. Human umbilical vein endothelial cells do not express Robo2 and Robo3. The hPMSC-conditioned medium and Slit2 recombinant protein significantly inhibit the endothelial cell migration, but not by the hPMSC-conditioned medium with Slit2 depletion. The hPMSC-conditioned medium and Slit2 significantly enhance endothelial tube formation with increased cumulated tube length, polygonal network number and vessel branching point number compared to endothelial cells alone. The tube formation is inhibited by the depletion of Slit2 from the conditioned medium, or following the expression of Robo1, Robo4, and both receptor knockdown using small interfering RNA. Furthermore, co-immunoprecipitation reveals Slit2 binds to Robo1 and Robo4. Robo1 interacts and forms a heterodimeric complex with Robo4. These results suggest the implication of both Robo receptors with Slit2 signaling, which is involved in endothelial cell angiogenesis. Slit2 in the conditioned medium of hPMSCs has functional effect on endothelial cells and may play a role in placental angiogenesis.  相似文献   
915.
Echinacea preparations were the top-selling herbal supplements or medicines in the past decade; however, there is still frequent misidentification or substitution of the Echinacea plant species in the commercial Echinacea products with not well chemically defined compositions in a specific preparation. In this report, a comparative metabolomics study, integrating supercritical fluid extraction, gas chromatography/mass spectrometry and data mining, demonstrates that the three most used medicinal Echinacea species, Echinacea purpurea, E. pallida, and E. angustifolia, can be easily classified by the distribution and relative content of metabolites. A mitogen-induced murine skin inflammation study suggested that alkamides were the active anti-inflammatory components present in Echinacea plants. Mixed alkamides and the major component, dodeca-2E,4E,8Z,10Z(E)-tetraenoic acid isobutylamides (8/9), were then isolated from E. purpurea root extracts for further bioactivity elucidation. In macrophages, the alkamides significantly inhibited cyclooxygenase 2 (COX-2) activity and the lipopolysaccharide-induced expression of COX-2, inducible nitric oxide synthase and specific cytokines or chemokines [i.e., TNF-α, interleukin (IL)-1α, IL-6, MCP-1, MIP-1β] but elevated heme oxygenase-1 protein expression. Cichoric acid, however, exhibited little or no effect. The results of high-performance liquid chromatography/electron spray ionization/mass spectrometry metabolite profiling of alkamides and phenolic compounds in E. purpurea roots showed that specific phytocompound (i.e., alkamides, cichoric acid and rutin) contents were subject to change under certain post-harvest or abiotic treatment. This study provides new insight in using the emerging metabolomics approach coupled with bioactivity assays for medicinal/nutritional plant species classification, quality control and the identification of novel botanical agents for inflammatory disorders.  相似文献   
916.
917.
Three classes of chemically defined tannins, gallotannins, ellagitannins and condensed tannins were examined for their inhibitory activities against purified poly (ADP-ribose) glycohydrolase. Ellagitannins showed higher inhibitory activities than gallotannins. In contrast, condensed tannins, which consist of an epicathechin gallate (ECG) oligomer without a glucose core were not appreciably inhibitory. Kinetic analysis revealed that the inhibition of ellagitannins was competitive with respect to the substrate poly(ADP-ribose), whereas gallotannins exhibited mixed-type inhibition. These results suggest that conjugation with glucose of hexahydroxy-diphenoyl (HHDP) group, which is a unique component of ellagitannins, potentiated the inhibitory activity, and that the structure of ellagitannins may have a functional domain which competes with poly(ADP-ribose) on the poly(ADP-ribose) glycohydrolase molecule.  相似文献   
918.
Biochar (BC) is a common minor constituent of soils and is usually derived from the burning of wood materials. In the case of Amazonian dark earth (ADE) soils, the increased amount of this material is believed to be due to anthropogenic action by ancient indigenous populations. In this study, we use 16S rRNA gene pyrosequencing to assess the bacterial diversity observed in the BC found in ADEs as well as in the dark earth itself and the adjacent Acrisol. Samples were taken from two sites, one cultivated with manioc and one with secondary forest cover. Analyses revealed that the community structure found in each sample had unique features. At a coarse phylogenetic resolution, the most abundant phyla in all sequence libraries were Actinobacteria, Acidobacteria, Verrucomicrobia and Proteobacteria that were present in similar relative abundance across all samples. However, the class composition varied between them highlighting the difference between the Acrisol and the remaining samples. This result was also corroborated by the comparison of the OTU composition (at 97 % identity). Also, soil coverage has shown an effect over the community structure observed in all samples. This pattern was found to be significant through unweighted UniFrac as well as P tests. These results indicate that, although the ADEs are found in patches within the Acrisols, the contrasting characteristics found between them led to the development of significantly different communities.  相似文献   
919.

Background

Whether or not hepatitis B virus (HBV) genotypes, mutations, and viral loads determine outcomes for patients with HBV-induced hepatocellular carcinoma (HCC) remains controversial.

Aims

To study the influence of HBV viral factors on prognoses for patients with HBV-induced HCC after resection surgery and investigate if antiviral therapy could counteract the adverse effects of viral factors.

Methods

A total of 333 HBV-related HCC patients who underwent tumor resection were enrolled retrospectively. Serum HBV DNA levels, mutations, anti-viral therapy, and other clinical variables were analyzed for their association with post-operative recurrence.

Results

After a median follow-up of 45.9 months, 208 patients had HCC recurrence after resection. The 5-year overall survival and recurrence-free survival rates were 55.4% and 35.3%, respectively. Multivariate analysis showed indocyanine green retention rate at 15 minutes >10%, gamma-glutamyltransferase (GGT) level >60 U/L, macroscopic and microscopic venous invasion, and the absence of anti-viral therapy were significant risk factors for recurrence. Anti-viral therapy could decrease recurrence in patients with early stage HCC, but the effect was less apparent in those with the Barcelona-Clinic Liver Cancer stage C HCC. For patients without antiviral therapy after resection, serum HBV DNA levels >106 copies/mL, GGT >60 U/L, and macroscopic and microscopic venous invasion were significant risk factors predicting recurrence. Among the 216 patients without anti-viral therapy but with complete HBV surface gene mapping data, 73 were with pre-S deletion mutants. Among patients with higher serum HBV DNA levels, those with pre-S deletion had significantly higher rates of recurrence. Moreover, multivariate analysis showed multi-nodularity, macroscopic venous invasion, cirrhosis, advanced tumor cell differentiation, and pre-S deletion were significant risk factors predictive of recurrence.

Conclusions

Ongoing HBV viral replication and pre-S deletion are crucial for determining post-operative tumor recurrence. Anti-viral therapy can help reduce recurrence and improve prognosis, especially for those with early stage HCC.  相似文献   
920.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号