首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4816篇
  免费   432篇
  国内免费   4篇
  5252篇
  2022年   42篇
  2021年   76篇
  2020年   26篇
  2019年   39篇
  2018年   63篇
  2017年   48篇
  2016年   113篇
  2015年   244篇
  2014年   250篇
  2013年   318篇
  2012年   434篇
  2011年   381篇
  2010年   205篇
  2009年   177篇
  2008年   236篇
  2007年   244篇
  2006年   235篇
  2005年   213篇
  2004年   199篇
  2003年   171篇
  2002年   162篇
  2001年   148篇
  2000年   136篇
  1999年   107篇
  1998年   54篇
  1997年   41篇
  1996年   43篇
  1995年   32篇
  1994年   32篇
  1993年   32篇
  1992年   70篇
  1991年   70篇
  1990年   59篇
  1989年   62篇
  1988年   59篇
  1987年   60篇
  1986年   37篇
  1985年   20篇
  1984年   32篇
  1983年   24篇
  1982年   15篇
  1981年   18篇
  1979年   26篇
  1978年   23篇
  1977年   16篇
  1976年   17篇
  1975年   18篇
  1974年   23篇
  1973年   22篇
  1972年   11篇
排序方式: 共有5252条查询结果,搜索用时 0 毫秒
991.
992.
Drosophila has been developed recently as a model system to investigate the molecular and neural mechanisms underlying responses to drugs of abuse. Genetic screens for mutants with altered drug-induced behaviors thus provide an unbiased approach to define novel molecules involved in the process. We identified mutations in the Drosophila LIM-only (LMO) gene, encoding a regulator of LIM-homeodomain proteins, in a genetic screen for mutants with altered cocaine sensitivity. Reduced Lmo function increases behavioral responses to cocaine, while Lmo overexpression causes the opposite effect, reduced cocaine responsiveness. Expression of Lmo in the principal Drosophila circadian pacemaker cells, the PDF-expressing ventral lateral neurons (LNvs), is sufficient to confer normal cocaine sensitivity. Consistent with a role for Lmo in LNv function, Lmo mutants also show defects in circadian rhythms of behavior. However, the role for LNvs in modulating cocaine responses is separable from their role as pacemaker neurons: ablation or functional silencing of the LNvs reduces cocaine sensitivity, while loss of the principal circadian neurotransmitter PDF has no effect. Together, these results reveal a novel role for Lmo in modulating acute cocaine sensitivity and circadian locomotor rhythmicity, and add to growing evidence that these behaviors are regulated by shared molecular mechanisms. The finding that the degree of cocaine responsiveness is controlled by the Drosophila pacemaker neurons provides a neuroanatomical basis for this overlap. We propose that Lmo controls the responsiveness of LNvs to cocaine, which in turn regulate the flies' behavioral sensitivity to the drug.  相似文献   
993.
For sperm to successfully fertilize an oocyte, it needs to pass through certain steps prior to, during and after initial recognition of the zona pellucida (ZP). During capacitation, the surface of the sperm head becomes remodelled, priming it to bind to the ZP and subsequently to undergo the ZP-induced acrosome reaction. During capacitation, sperm ZP-binding proteins are ordered in functional protein complexes that only emerge at the apical tip of the sperm head plasma membrane; this is also functionally the exclusive sperm surface area involved in primary ZP binding. After primary ZP binding, the same area is probably involved in the induction of the acrosome reaction. A combination of biochemical and proteomic membrane protein techniques have enabled us to dissect and highly purify the apical sperm plasma membrane area from control and capacitated sperm cells. The actual ZP-binding proteins identified predominantly belonged to the sperm membrane-associated family members of spermadhesins (AQN-3) and were present in the aggregating lipid ordered membrane microdomains (lipid rafts) that emerged during in vitro capacitation in the apical ridge area of the sperm head plasma membrane. This clustering of these rafts was dependent on the presence of bicarbonate (involved in protein kinase A activation) and on the presence of albumin (involved in cholesterol removal). Remarkably, cholesterol removal was restricted to the non-raft membrane fraction of the sperm plasma membrane, but did not cause any depletion of cholesterol in the raft membrane fraction. Interestingly, sperm SNARE proteins (both VAMP from the outer acrosomal membrane, as well syntaxin from the apical sperm head plasma membrane) shared lateral redistribution properties, along with the ZP-binding protein complex and raft marker proteins. All of these were recovered after capacitation in detergent-resistant membrane preparations from sperm thought to represent membrane lipid rafts. We inferred that the capacitation-dependent formation of an aggregated lipid ordered apical ridge surface area in the sperm head plasma membrane was not only relevant for ZP-binding, but also for the ZP-induced acrosome reaction.  相似文献   
994.
995.
Apiyo D  Zhao L  Tsai MD  Selby TL 《Biochemistry》2005,44(30):9980-9989
Phosphatidylinositol-specific phospholipase Cs (PLCs) are a family of phosphodiesterases that catalyze the cleavage of the P-O bond via transesterification using the internal hydroxyl group of the substrate as a nucleophile, generating the five-membered cyclic inositol phosphate as an intermediate or product. To better understand the role of calcium in the catalytic mechanism of PLCs, we have determined the X-ray crystal structure of an engineered PLC enzyme from Bacillus thuringiensis to 2.1 A resolution. The active site of this enzyme has been altered by substituting the catalytic arginine with an aspartate at position 69 (R69D). This single-amino acid substitution converted a metal-independent, low-molecular weight enzyme into a metal ion-dependent bacterial PLC with an active site architecture similar to that of the larger metal ion-dependent mammalian PLC. The Ca(2+) ion shows a distorted square planar geometry in the active site that allows for efficient substrate binding and transition state stabilization during catalysis. Additional changes in the positions of the catalytic general acid/general base (GA/GB) were also observed, indicating the interrelation of the intricate hydrogen bonding network involved in stabilizing the active site amino acids. The functional information provided by this X-ray structure now allows for a better understanding of the catalytic mechanism, including stereochemical effects and substrate interactions, which facilitates better inhibitor design and sheds light on the possibilities of understanding how protein evolution might have occurred across this enzyme family.  相似文献   
996.
Honokiol (HNK) is a phenolic compound isolated from the bark of houpu (Magnolia officinalis), a plant widely used in traditional Chinese and Japanese medicine. While substantial evidence indicates that HNK possesses anti-inflammatory activity, its effect on dendritic cells (DCs) during the inflammatory reaction remains unclear. The present study investigates how HNK affects lipopolysaccharide (LPS)-stimulated human monocyte-derived DCs. Our experimental results show that HNK inhibits the inflammatory response of LPS-induced DCs by (1) suppressing the expression of CD11c, CD40, CD80, CD83, CD86, and MHC-II on LPS-activated DCs, (2) reducing the production of TNF-α, IL-1β, IL-6, and IL-12p70 but increasing the production of IL-10 and TGF-β1 by LPS-activated DCs, (3) inhibiting the LPS-induced DC-elicited allogeneic T-cell proliferation, and (4) shifting the LPS-induced DC-driven Th1 response toward a Th2 response. Further, our results show that HNK inhibits the phosphorylation levels of ERK1/2, p38, JNK1/2, IKKα, and IκBα in LPS-activated DCs. Collectively, the findings show that the anti-inflammatory actions of HNK on LPS-induced DCs are associated with the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways.  相似文献   
997.
We evaluated possible modulation by angiotensin III (AIII) of the interactive effect of noxious stimuli and elevation in systemic arterial pressure on the responsiveness of neurons in the nucleus reticularis gigantocellularis (NRGC) of the medulla oblongata. Combined extracellular single-neuron recording and microiontophoresis were carried out on male, adult Sprague-Dawley rats anesthetized with pentobarbital sodium. The responsiveness of NRGC neurons to nociception (tail clamp) and/or transient hypertension elicited by phenylephrine (5 μg/kg, i.v.), in the absence or presence of AIII, was used as the experimental index. Microiontophoretic application of the heptapeptide suppressed the responses of spontaneously active NRGC neurons to individually delivered nociception or hypertension. Interestingly, the preferential reduction in responsiveness to tail clamp upon simultaneous elevation in arterial pressure was reversed to one that favored nociception in the presence of AIII. These actions of the heptapeptide appeared to be receptor-specific, since they were discernibly blocked by its selective antagonist, Ile7-angiotensin III. Our results reveal that neuropeptides such as AIII may differentially modulate neuronal responsiveness according to the prevailing physiologic input(s) to the central nervous system of the animal.  相似文献   
998.
999.
A d-aminoacylase-producing microorganism, strain DA181, isolated from soil was identified as Alcaligenes denitrificans subsp. denitrificans. This strain produced about 29,300 units (micromoles of product formed per hour) of d-aminoacylase and 2,300 units of l-aminoacylase per gram of cells (wet weight) when cultivated in a medium containing 1% N-acetyl-dl-leucine as the carbon source. The d-aminoacylase was purified 345-fold. The specific activity of the purified enzyme was 108,600 units per mg of protein when N-acetyl-d-methionine was used as a substrate. The apparent molecular weight was 58,000, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. N-Acetyl-d-methionine was the favored substrate, followed by N-acetyl-d-phenylalanine. This enzyme had a high stereospecificity, and its hydrolysis of N-acetyl-l-amino acids was almost negligible.  相似文献   
1000.
The purpose of this study is to assess the preclinical therapeutic efficacy of magnetic resonance imaging (MRI)-monitored focused ultrasound (FUS)-induced blood-brain barrier (BBB) disruption to enhance Temozolomide (TMZ) delivery for improving Glioblastoma Multiforme (GBM) treatment. MRI-monitored FUS with microbubbles was used to transcranially disrupt the BBB in brains of Fisher rats implanted with 9L glioma cells. FUS-BBB opening was spectrophotometrically determined by leakage of dyes into the brain, and TMZ was quantitated in cerebrospinal fluid (CSF) and plasma by LC-MS\MS. The effects of treatment on tumor progression (by MRI), animal survival and brain tissue histology were investigated. Results demonstrated that FUS-BBB opening increased the local accumulation of dyes in brain parenchyma by 3.8-/2.1-fold in normal/tumor tissues. Compared to TMZ alone, combined FUS treatment increased the TMZ CSF/plasma ratio from 22.7% to 38.6%, reduced the 7-day tumor progression ratio from 24.03 to 5.06, and extended the median survival from 20 to 23 days. In conclusion, this study provided preclinical evidence that FUS BBB-opening increased the local concentration of TMZ to improve the control of tumor progression and animal survival, suggesting its clinical potential for improving current brain tumor treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号