首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1215篇
  免费   123篇
  国内免费   1篇
  2022年   5篇
  2021年   11篇
  2020年   5篇
  2019年   8篇
  2018年   13篇
  2017年   9篇
  2016年   17篇
  2015年   41篇
  2014年   51篇
  2013年   61篇
  2012年   65篇
  2011年   52篇
  2010年   48篇
  2009年   33篇
  2008年   54篇
  2007年   60篇
  2006年   49篇
  2005年   48篇
  2004年   49篇
  2003年   50篇
  2002年   50篇
  2001年   49篇
  2000年   54篇
  1999年   39篇
  1998年   23篇
  1997年   13篇
  1996年   13篇
  1995年   21篇
  1994年   6篇
  1993年   12篇
  1992年   27篇
  1991年   36篇
  1990年   35篇
  1989年   25篇
  1988年   27篇
  1987年   18篇
  1986年   13篇
  1985年   20篇
  1984年   18篇
  1983年   13篇
  1982年   10篇
  1981年   13篇
  1979年   11篇
  1978年   10篇
  1977年   9篇
  1973年   5篇
  1972年   6篇
  1971年   5篇
  1970年   5篇
  1969年   4篇
排序方式: 共有1339条查询结果,搜索用时 15 毫秒
161.
A newly isolated osmo-, salt-, and alkalitolerant Yarrowia lipolytica yeast strain is distinguished from other yeast species by its capacity to grow vigorously at alkaline pH values (9.7), which makes it a promising model organism for studying Na+-dependent phosphate transport systems in yeasts. Phosphate uptake by Y. lipolytica cells grown at pH 9.7 was mediated by several kinetically discrete Na+-dependent systems specifically activated by Na+. One of these, a low-affinity transporter, operated at high concentrations of extracellular phosphate. The other two, high-affinity systems, maximally active in phosphate-starved cells, were repressed or derepressed depending on the prevailing extracellular phosphate concentration and pH value. The contribution of Na+/Pi-cotransport systems to the total cellular phosphate uptake progressively increased with increasing pH, reaching its maximum at pH 9.Translated from Biokhimiya, Vol. 69, No. 11, 2004, pp. 1607–1615.Original Russian Text Copyright © 2004 by Zvyagilskaya, Persson.  相似文献   
162.
The tetrapeptide KFFE is one of the shortest amyloid fibril-forming peptides described. Herein, we have investigated how the structural environment of this motif affects polymerization. Using a turn motif (YNGK) or a less rigid sequence (AAAK) to fuse two KFFE tetrapeptides, we show by several biophysical methods that the amyloidogenic properties are strongly dependent on the structural environment. The dodecapeptide KFFEAAAKKFFE forms abundant thick fibril bundles. Freshly dissolved KFFEAAAKKFFE is monomeric and shows mainly disordered secondary structure, as evidenced by circular dichroism, NMR spectroscopy, hydrogen/deuterium exchange measurements, and molecular modeling studies. In sharp contrast, the dodecapeptide KFFEYNGKKFFE does not form fibrils but folds into a stable beta-hairpin. This structure can oligomerize into a stable 12-mer and multiples thereof, as shown by size exclusion chromatography, sedimentation analysis, and electrospray mass spectrometry. These data indicate that the structural context in which a potential fibril forming sequence is present can prevent fibril formation by favoring self-limiting oligomerization over polymerization.  相似文献   
163.
Cell-penetrating peptides (CPPs) have been extensively studied during the past decade, because of their ability to promote the cellular uptake of various cargo molecules, e.g., oligonucleotides and proteins. In a recent study of the uptake of several analogues of penetratin, Tat(48-60) and oligoarginine in live (unfixed) cells [Thorén et al. (2003) Biochem. Biophys. Res. Commun. 307, 100-107], it was found that both endocytotic and nonendocytotic uptake pathways are involved in the internalization of these CPPs. In the present study, the membrane interactions of some of these novel peptides, all containing a tryptophan residue to facilitate spectroscopic studies, are investigated. The peptides exhibit a strong affinity for large unilamellar vesicles (LUVs) containing zwitterionic and anionic lipids, with binding constants decreasing in the order penetratin > R(7)W > TatP59W > TatLysP59W. Quenching studies using the aqueous quencher acrylamide and brominated lipids indicate that the tryptophan residues of the peptides are buried to a similar extent into the membrane, with an average insertion depth of approximately 10-11 A from the bilayer center. The membrane topology of the peptides was investigated using an assay based on resonance energy transfer between tryptophan and a fluorescently labeled lysophospholipid, lysoMC, distributed asymmetrically in the membranes of LUVs. By determination of the energy transfer efficiency when peptide was added to vesicles with lysoMC present exclusively in the inner leaflet, it was shown that none of the peptides investigated is able to translocate across the lipid membranes of LUVs. By contrast, confocal laser scanning microscopy studies on carboxyfluorescein-labeled peptides showed that all of the peptides rapidly traverse the membranes of giant unilamellar vesicles (GUVs). The choice of model system is thus crucial for the conclusions about the ability of CPPs to translocate across lipid membranes. Under the conditions used in the present study, peptide-lipid interactions alone cannot explain the different cellular uptake characteristics exhibited by these peptides.  相似文献   
164.
New aspects on phosphate sensing and signalling in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
The mechanism involved in the cellular phosphate response of Saccharomyces cerevisiae forms part of the PHO pathway, which upon expression allows a co-ordinated cellular response and adaptation to changes in availability of external phosphate. Although genetic studies and analyses of the S. cerevisiae genome have produced much information on the components of the PHO pathway, little is known about how cells sense the environmental phosphate level and the mechanistic regulation of phosphate acquisition. Recent studies emphasize different levels in phosphate sensing and signalling in response to external phosphate fluctuations. This review integrates all these findings into a model involving rapid and long-term effects of phosphate sensing and signalling in S. cerevisiae. The model describes in particular how yeast cells are able to adjust phosphate acquisition by integrating the status of the intracellular phosphate pools together with the extracellular phosphate concentration.  相似文献   
165.
The unique family of membrane-bound proton-pumping inorganic pyrophosphatases, involving pyrophosphate as the alternative to ATP, was investigated by characterizing 166 members of the UniProtKB/Swiss-Prot + UniProtKB/TrEMBL databases and available completed genomes, using sequence comparisons and a hidden Markov model based upon a conserved 57-residue region in the loop between transmembrane segments 5 and 6. The hidden Markov model was also used to search the approximately one million sequences recently reported from a large-scale sequencing project of organisms in the Sargasso Sea, resulting in additional 164 partial pyrophosphatase sequences. The strongly conserved 57-residue region was found to contain two nonapeptidyl sequences, mainly consisting of the four 'very early' proteinaceous amino acid residues Gly, Ala, Val and Asp, compatible with an ancient origin of the inorganic pyrophosphatases. The nonapeptide patterns have charged amino acid residues at positions 1, 5 and 9, are apparent binding sites for the substrate and parts of the active site, and were shown to be so specific for these enzymes that they can be used for functional assignments of unannotated genomes.  相似文献   
166.
167.
168.
The initial recognition and binding of macromolecular substrates by factor VIIa (FVIIa) in complex with tissue factor has been shown to be mediated by areas distinct from the active site (so-called exosites). The present aim was to shed light on whether the N-terminal tail of the protease domain of FVIIa influences factor X (FX) binding, and whether the zymogen-like conformation of free FVIIa has a decreased affinity for FX compared to the active conformation. Two derivatives of FVIIa, one (FFR-FVIIa) with a stably buried N-terminus representing the active conformation of FVIIa and one (V154G-FVIIa) with a fully exposed N-terminus representing the zymogen-like conformation, were used as inhibitors of FVIIa-catalyzed FX activation. Their inhibitory capacities were very similar, with K(i) values not significantly different from the K(m) for FX. This indicates that the conformational state of the N-terminus does not affect FX binding or, alternatively, that the activation domain including the N-terminal insertion site is easily shifted to the stable conformation ensuing FX docking to the zymogen-like conformation. The net outcome is that FX binding to the zymogen-like form of FVIIa does not appear to be impaired.  相似文献   
169.
Streptococcus pyogenes is a Gram-positive bacterium that causes several diseases, including acute tonsillitis and toxic shock syndrome. The surface-localized M protein, which is the most extensively studied virulence factor of S. pyogenes, has an approximately 50-residue N-terminal hypervariable region (HVR) that plays a key role in the escape of the host immunity. Despite the extensive sequence variability in this region, many HVRs specifically bind human C4b-binding protein (C4BP), a plasma protein that inhibits complement activation. Although the more conserved parts of M protein are known to have dimeric coiled-coil structure, it is unclear whether the HVR also is a coiled coil. Here, we use nuclear magnetic resonance (NMR) to study the conformational properties of HVRs from M4 and M22 proteins in isolation and in complex with the M protein binding portion of C4BP. We conclude that the HVRs of M4 and M22 are folded as coiled coils and that the folded nucleus of the M4 HVR has a length of approximately 27 residues. Moreover, we demonstrate that the C4BP binding surface of M4-N is found within a region of four heptad repeats. Using molecular modeling, we propose a model for the structure of the M4 HVR that is consistent with our experimental information from NMR spectroscopy.  相似文献   
170.
The primary granules/secretory lysosomes of neutrophils store mature neutrophil elastase (NE) as a luminal protein after proteolytic removal of N-terminal and C-terminal pro-peptides from a proform of NE. The N-terminal pro-peptide prevents premature activation that might be toxic to the cell, but the C-terminal pro-peptide has no defined function. In this study, we investigated the role of the C-terminal pro-peptide in trafficking of NE by expressing, in rat basophilic leukemia (RBL) cells, both wild-type NE and the mutant NE/Delta248-267, which lacks the C-terminal pro-peptide. Both transfected proteins were found to be targeted to secretory lysosomes. In addition, results from antibody ligation and cell-surface biotinylation indicated that proform of NE was targeted to the plasma membrane, and then subjected to endocytosis. The results were supported by the detection of targeting of the proform to the plasma membrane followed by internalization both in RBL cells and normal granulopoietic precursor cells. Targeting of NE to the plasma membrane required the C-terminal pro-peptide as NE/Delta248-267 expressed in RBL cells bypassed plasma membrane trafficking. Our results indicate targeting of a population of NE to the plasma membrane and internalization dependent on the C-terminal NE pro-peptide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号