首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   3篇
  2018年   1篇
  2016年   4篇
  2015年   2篇
  2013年   2篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2007年   4篇
  2004年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有22条查询结果,搜索用时 0 毫秒
21.
Lake Liambezi forms the periodic connection between the upper Zambezi, Kwando and Okavango rivers. A full parasitological assessment was conducted on 86 fish, representing 14 species in six families sampled in August 2011. Parasite diversity was low and dominated by species with complex life cycles involving intermediate hosts. Most prevalent were larval nematodes (Contracaecum sp.) infecting 12 and Trypanasoma sp. infecting nine of the 14 host species. The intra-erythrocytic parasite Babesiosoma mariae was found in the blood of Coptodon rendalli and Oreochromis andersonii with prevalence of 50% and 60%, respectively. The host-specific monogenean Annulotrema hepseti was recorded only from H. cuvieri with a prevalence of 100%. Notable absences were the copepod and branchiuran parasites that have direct lifecycles and usually occur in high prevalence and abundance in the region. Because parasites with direct life cycles can only be transported into the lake on the host fish, their absence suggests limited immigration of infected fishes into the lake. This suggests that internal recruitment dominates over immigration in the fish population dynamics in Lake Liambezi.  相似文献   
22.
Tumor metastasis is characterized by enhanced invasiveness and migration of tumor cells through the extracellular matrix (ECM), resulting in extravasation into the blood and lymph and colonization at secondary sites. The ECM provides a physical scaffold consisting of components such as collagen fibrils, which have distinct dimensions at the nanoscale. In addition to the interaction of peptide moieties with tumor cell integrin clusters, the ECM provides a physical guide for tumor cell migration. Using nanolithography we set out to mimic the physical dimensions of collagen fibrils using lined nanotopographical silicon surfaces and to explore whether metastatic tumor cells are uniquely able to respond to these physical dimensions. Etched silicon surfaces containing nanoscale lined patterns with varying trench and ridge sizes (65–500 nm) were evaluated for their ability to distinguish between a non-metastatic (253J) and a highly metastatic (253J-BV) derivative bladder cancer cell line. Enhanced alignment was distinctively observed for the metastatic cell lines on feature sizes that mimic the dimensions of collagen fibrils (65–100 nm lines, 1:1–1:1.5 pitch). Further, these sub-100 nm lines acted as guides for migration of metastatic cancer cells. Interestingly, even at this subcellular scale, metastatic cell migration was abrogated when cells were forced to move perpendicular to these lines. Compared to flat surfaces, 65 nm lines enhanced the formation of actin stress fibers and filopodia of metastatic cells. This was accompanied by increased formation of focal contacts, visualized by immunofluorescent staining of phospho-focal adhesion kinase along the protruding lamellipodia. Simple lined nanotopography appears to be an informative platform for studying the physical cues of the ECM in a pseudo-3D format and likely mimics physical aspects of collagen fibrils. Metastatic cancer cells appear distinctively well adapted to sense these features using filopodia protrusions to enhance their alignment and migration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号