首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   886篇
  免费   70篇
  2022年   4篇
  2021年   15篇
  2020年   10篇
  2019年   11篇
  2018年   23篇
  2017年   21篇
  2016年   19篇
  2015年   27篇
  2014年   33篇
  2013年   44篇
  2012年   48篇
  2011年   42篇
  2010年   36篇
  2009年   23篇
  2008年   25篇
  2007年   40篇
  2006年   41篇
  2005年   25篇
  2004年   46篇
  2003年   38篇
  2002年   27篇
  2001年   32篇
  2000年   28篇
  1999年   31篇
  1998年   7篇
  1997年   6篇
  1996年   13篇
  1995年   5篇
  1994年   10篇
  1993年   9篇
  1992年   20篇
  1991年   21篇
  1990年   13篇
  1989年   17篇
  1988年   20篇
  1987年   13篇
  1986年   7篇
  1985年   9篇
  1984年   8篇
  1983年   7篇
  1980年   5篇
  1979年   4篇
  1978年   4篇
  1977年   5篇
  1975年   13篇
  1973年   6篇
  1972年   9篇
  1970年   8篇
  1969年   4篇
  1966年   3篇
排序方式: 共有956条查询结果,搜索用时 125 毫秒
91.
The Pot1 (protection of telomeres) protein binds to single-stranded telomeric DNA and is essential for the protection of chromosome ends from degradation and end-to-end fusions. The Pot1 amino-terminal DNA binding domain, Pot1N, adopts an oligonucleotide/oligosaccharide binding fold and binds GGTTAC motifs cooperatively and with exceptionally high sequence specificity. We have now examined DNA binding to naturally occurring telomeric substrates based on the analysis of 100 cloned chromosome ends and in the context of the full-length Pot1 protein. Here, we describe several important differences between Pot1 and Pot1N with apparent consequences for chromosome end protection. Specifically, full-length Pot1.DNA complexes are more stable, and the minimal binding site for a Pot1 monomer is extended into two adjacent telomeric repeats. We provide evidence that Pot1 contains a second DNA binding motif that recognizes DNA with reduced sequence specificity compared with the domain present in Pot1N. The two DNA binding motifs cooperate, whereby the amino-terminal oligonucleotide/oligosaccharide binding fold determines the registry of binding, and the internal DNA binding motif stabilizes the complex and expands the protected region toward the 3' -end. Consistent with a role in chromosome end capping, Pot1 prevents access of telomerase to the 3'-end and protects against exonucleolytic degradation.  相似文献   
92.
Coproporphyrinogen oxidase (CPO) is an essential enzyme that catalyzes the sixth step of the heme biosynthetic pathway. Unusually for heme biosynthetic enzymes, CPO exists in two evolutionarily and mechanistically distinct families, with eukaryotes and some prokaryotes employing members of the highly conserved oxygen-dependent CPO family. Here, we report the crystal structure of the oxygen-dependent CPO from Saccharomyces cerevisiae (Hem13p), which was determined by optimized sulfur anomalous scattering and refined to a resolution of 2.0 A. The protein adopts a novel structure that is quite different from predicted models and features a central flat seven-stranded anti-parallel sheet that is flanked by helices. The dimeric assembly, which is seen in different crystal forms, is formed by packing of helices and a short isolated strand that forms a beta-ladder with its counterpart in the partner subunit. The deep active-site cleft is lined by conserved residues and has been captured in open and closed conformations in two different crystal forms. A substratesized cavity is completely buried in the closed conformation by the approximately 8-A movement of a helix that forms a lid over the active site. The structure therefore suggests residues that likely play critical roles in catalysis and explains the deleterious effect of many of the mutations associated with the disease hereditary coproporphyria.  相似文献   
93.
94.
Myosins have been implicated in various motile processes, including organelle translocation, ion-channel gating, and cytoskeleton reorganization. Different members of the myosin superfamily are responsible for syndromic and nonsyndromic hearing impairment in both humans and mice. MYH14 encodes one of the heavy chains of the class II nonmuscle myosins, and it is localized within the autosomal dominant hearing impairment (DFNA4) critical region. After demonstrating that MYH14 is highly expressed in mouse cochlea, we performed a mutational screening in a large series of 300 hearing-impaired patients from Italy, Spain, and Belgium and in a German kindred linked to DFNA4. This study allowed us to identify a nonsense and two missense mutations in large pedigrees, linked to DFNA4, as well as a de novo allele in a sporadic case. Absence of these mutations in healthy individuals was tested in 200 control individuals. These findings clearly demonstrate the role of MYH14 in causing autosomal dominant hearing loss and further confirm the crucial role of the myosin superfamily in auditive functions.  相似文献   
95.
Structural maintenance of chromosomes (SMC) proteins have diverse cellular functions including chromosome segregation, condensation and DNA repair. They are grouped based on a conserved set of distinct structural motifs. All SMC proteins are predicted to have a bipartite ATPase domain that is separated by a long region predicted to form a coiled coil. Recent structural data on a variety of SMC proteins shows them to be arranged as long intramolecular coiled coils with a globular ATPase at one end. SMC proteins function in pairs as heterodimers or as homodimers often in complexes with other proteins. We expect the arrangement of the SMC protein domains in complex assemblies to have important implications for their diverse functions. We used scanning force microscopy imaging to determine the architecture of human, Saccharomyces cerevisiae, and Pyrococcus furiosus Rad50/Mre11, Escherichia coli SbcCD, and S.cerevisiae SMC1/SMC3 cohesin SMC complexes. Two distinct architectural arrangements are described, based on the way their components were connected. The eukaryotic complexes were similar to each other and differed from their prokaryotic and archaeal homologs. These similarities and differences are discussed with respect to their diverse mechanistic roles in chromosome metabolism.  相似文献   
96.
This study evaluated type-specific and cross-reactive neutralizing antibodies induced by immunization with modified surface glycoproteins (SU) of the 63 isolate of caprine arthritis-encephalitis lentivirus (CAEV-63). Epitope mapping of sera from CAEV-infected goats localized immunodominant linear epitopes in the carboxy terminus of SU. Two modified SU (SU-M and SU-T) and wild-type CAEV-63 SU (SU-W) were produced in vaccinia virus and utilized to evaluate the effects of glycosylation or the deletion of immunodominant linear epitopes on neutralizing antibody responses induced by immunization. SU-M contained two N-linked glycosylation sites inserted into the target epitopes by R539S and E542N mutations. SU-T was truncated at 518A, upstream from the target epitopes, by introduction of termination codons at 519Y and 521Y. Six yearling Saanen goats were immunized subcutaneously with 30 microg of SU-W, SU-M, or SU-T in Quil A adjuvant and boosted at 3, 7, and 16 weeks. SU antibody titers determined by indirect enzyme-linked immunosorbent assay demonstrated anamnestic responses after each boost. Wild-type and modified SU-induced type-specific CAEV-63 neutralizing antibodies and cross-reactive neutralizing antibodies against CAEV-Co, a virus isolate closely related to CAEV-63, and CAEV-1g5, an isolate geographically distinct from CAEV-63, were determined. Immunization with SU-T resulted in altered recognition of SU linear epitopes and a 2.8- to 4.6-fold decrease in neutralizing antibody titers against CAEV-63, CAEV-Co, and CAEV-1g5 compared to titers of SU-W-immunized goats. In contrast, immunization with SU-M resulted in reduced recognition of glycosylated epitopes and a 2.4- to 2.7-fold increase in neutralizing antibody titers compared to titers of SU-W-immunized goats. Thus, the glycosylation of linear immunodominant nonneutralization epitopes, but not epitope deletion, is an effective strategy to enhance neutralizing antibody responses by immunization.  相似文献   
97.
98.
99.
The purpose of this work was the force–displacement response analysis of the masticatory process in a dried human skull by Double-Exposure Photorefractive Holographic Interferometry Technique (2E-PRHI). The load concentration and dissipation of the forces from dried human skull were analysed at applied loading stands as a Simulation of Isolated Contraction (SIC) of some mastication muscles. The 2EHI and Fringe Analysis Method were used to obtain the quantitative results of this force–displacement response. These results document quantitatively the real biomechanical response from dried human skull under applied loading and it can be used for complementary study by finite element model and others analysis type.  相似文献   
100.
We developed a rapid, practical and non-toxic salting-out method for the extraction of DNA from marine organisms, and tested it on two representative species of Porifera and Cnidaria, both living in association with symbiotic zooxanthellae. We tested the efficiency of the protocol by comparing the output of the method for fresh tissue, frozen tissue and tissue stored in ethanol. It proved to be effective for extracting DNA in the case of the methods of preservation considered here, and for obtaining quantities of DNA comparable to those obtained via the traditional approach. The DNA from both species was of good quality. The DNA obtained was amplified by PCR using specific primers for the large ribosomal subunit, allowing the identification of the presence of both the host and symbiont genomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号