首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   12篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   7篇
  2014年   9篇
  2013年   5篇
  2012年   9篇
  2011年   13篇
  2010年   9篇
  2009年   7篇
  2008年   17篇
  2007年   15篇
  2006年   13篇
  2005年   9篇
  2004年   4篇
  2003年   8篇
  2002年   6篇
  2001年   4篇
  2000年   5篇
  1999年   2篇
  1998年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1978年   2篇
  1973年   1篇
  1971年   2篇
  1970年   1篇
  1963年   1篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
21.
The proteins P52 and P36 are expressed in the sporozoite stage of the murine malaria parasite Plasmodium berghei. Δp52&p36 sporozoites lacking expression of both proteins are severely compromised in their capability to develop into liver stage parasites and abort development soon after invasion; presumably due to the absence of a parasitophorous vacuole membrane (PVM). However, a small proportion of P. berghei Δp52&p36 parasites is capable to fully mature in hepatocytes causing breakthrough blood stage infections. We have studied the maturation of replicating Δp52&p36 parasites in cultured Huh-7 hepatocytes. Approximately 50% of Δp52&p36 parasites developed inside the nucleus of the hepatocyte but did not complete maturation and failed to produce merosomes. In contrast cytosolic Δp52&p36 parasites were able to fully mature and produced infectious merozoites. These Δp52&p36 parasites developed into mature schizonts in the absence of an apparent parasitophorous vacuole membrane as shown by immunofluorescence and electron microscopy. Merozoites derived from these maturing Δp52&p36 liver stages were infectious for C57BL/6 mice.  相似文献   
22.
For over 30 years a phospholipase C enzyme called alpha-toxin was thought to be the key virulence factor in necrotic enteritis caused by Clostridium perfringens. However, using a gene knockout mutant we have recently shown that alpha-toxin is not essential for pathogenesis. We have now discovered a key virulence determinant. A novel toxin (NetB) was identified in a C. perfringens strain isolated from a chicken suffering from necrotic enteritis (NE). The toxin displayed limited amino acid sequence similarity to several pore forming toxins including beta-toxin from C. perfringens (38% identity) and alpha-toxin from Staphylococcus aureus (31% identity). NetB was only identified in C. perfringens type A strains isolated from chickens suffering NE. Both purified native NetB and recombinant NetB displayed cytotoxic activity against the chicken leghorn male hepatoma cell line LMH; inducing cell rounding and lysis. To determine the role of NetB in NE a netB mutant of a virulent C. perfringens chicken isolate was constructed by homologous recombination, and its virulence assessed in a chicken disease model. The netB mutant was unable to cause disease whereas the wild-type parent strain and the netB mutant complemented with a wild-type netB gene caused significant levels of NE. These data show unequivocally that in this isolate a functional NetB toxin is critical for the ability of C. perfringens to cause NE in chickens. This novel toxin is the first definitive virulence factor to be identified in avian C. perfringens strains capable of causing NE. Furthermore, the netB mutant is the first rationally attenuated strain obtained in an NE-causing isolate of C. perfringens; as such it has considerable vaccine potential.  相似文献   
23.
The quantitative analysis of Plasmodium development in the liver in laboratory animals in cultured cells is hampered by low parasite infection rates and the complicated methods required to monitor intracellular development. As a consequence, this important phase of the parasite''s life cycle has been poorly studied compared to blood stages, for example in screening anti-malarial drugs. Here we report the use of a transgenic P. berghei parasite, PbGFP-Luccon, expressing the bioluminescent reporter protein luciferase to visualize and quantify parasite development in liver cells both in culture and in live mice using real-time luminescence imaging. The reporter-parasite based quantification in cultured hepatocytes by real-time imaging or using a microplate reader correlates very well with established quantitative RT-PCR methods. For the first time the liver stage of Plasmodium is visualized in whole bodies of live mice and we were able to discriminate as few as 1–5 infected hepatocytes per liver in mice using 2D-imaging and to identify individual infected hepatocytes by 3D-imaging. The analysis of liver infections by whole body imaging shows a good correlation with quantitative RT-PCR analysis of extracted livers. The luminescence-based analysis of the effects of various drugs on in vitro hepatocyte infection shows that this method can effectively be used for in vitro screening of compounds targeting Plasmodium liver stages. Furthermore, by analysing the effect of primaquine and tafenoquine in vivo we demonstrate the applicability of real time imaging to assess parasite drug sensitivity in the liver. The simplicity and speed of quantitative analysis of liver-stage development by real-time imaging compared to the PCR methodologies, as well as the possibility to analyse liver development in live mice without surgery, opens up new possibilities for research on Plasmodium liver infections and for validating the effect of drugs and vaccines on the liver stage of Plasmodium.  相似文献   
24.
Blood-based protein biomarkers hold great promise to advance medicine with applications that detect and diagnose diseases and aid in their treatment. We are developing such applications with our proteomics technology that combines high-content with low limits of detection. Biomarker discovery relies heavily on archived blood sample collections. Blood is dynamic and changes with different sampling procedures potentially confounding biomarker studies. In order to better understand the effects of sampling procedures on the circulating proteome, we studied three sample collection variables commonly encountered in archived sample sets. These variables included (1) three different sample tube types, PPT plasma, SST serum, and Red Top serum, (2) the time from venipuncture to centrifugation, and (3) the time from centrifugation to freezing. We profiled 498 proteins for each of 240 samples and compared the results by ANOVA. The results found no significant variation in the measurements for most proteins (~ 99%) when the two sample processing times tested were 2 h or less, regardless of sample tube type. Even at the longest timepoints, 20 h, ~ 82% of the proteins, on average for the three collection tube types, showed no significant change. These results are encouraging for proteomic biomarker discovery.  相似文献   
25.

Background

The interrogation of proteomes (“proteomics”) in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine.

Methodology/Principal Findings

We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma). Our current assay measures 813 proteins with low limits of detection (1 pM median), 7 logs of overall dynamic range (∼100 fM–1 µM), and 5% median coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding signature of DNA aptamer concentrations, which is quantified on a DNA microarray. Our assay takes advantage of the dual nature of aptamers as both folded protein-binding entities with defined shapes and unique nucleotide sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to rapidly discover unique protein signatures characteristic of various disease states.

Conclusions/Significance

We describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine.  相似文献   
26.
In bacterial cells, protein expression is a highly stochastic process. Gene expression noise moreover propagates through the cell and adds to fluctuations in the cellular growth rate. A common intuition is that, due to their relatively high noise amplitudes, proteins with a low mean expression level are the most important drivers of fluctuations in physiological variables. In this work, we challenge this intuition by considering the effect of natural selection on noise propagation. Mathematically, the contribution of each protein species to the noise in the growth rate depends on two factors: the noise amplitude of the protein’s expression level, and the sensitivity of the growth rate to fluctuations in that protein’s concentration. We argue that natural selection, while shaping mean abundances to increase the mean growth rate, also affects cellular sensitivities. In the limit in which cells grow optimally fast, the growth rate becomes most sensitive to fluctuations in highly abundant proteins. This causes abundant proteins to overall contribute strongly to the noise in the growth rate, despite their low noise levels. We further explore this result in an experimental data set of protein abundances, and test key assumptions in an evolving, stochastic toy model of cellular growth.  相似文献   
27.
28.
Transgenic Arabidopsis (Arabidopsis thaliana) plants containing a monomeric copy of the cauliflower mosaic virus (CaMV) genome exhibited the generation of infectious, episomally replicating virus. The circular viral genome had been split within the nonessential gene II for integration into the Arabidopsis genome by Agrobacterium tumefaciens-mediated transformation. Transgenic plants were assessed for episomal infections at flowering, seed set, and/or senescence. The infections were confirmed by western blot for the CaMV P6 and P4 proteins, electron microscopy for the presence of icosahedral virions, and through polymerase chain reaction across the recombination junction. By the end of the test period, a majority of the transgenic Arabidopsis plants had developed episomal infections. The episomal form of the virus was infectious to nontransgenic plants, indicating that no essential functions were lost after release from the Arabidopsis chromosome. An analysis of the viral genomes recovered from either transgenic Arabidopsis or nontransgenic turnip (Brassica rapa var rapa) revealed that the viruses contained deletions within gene II, and in some cases, the deletions extended to the beginning of gene III. In addition, many of the progeny viruses contained small regions of nonviral sequence derived from the flanking transformation vector. The nature of the nucleotide sequences at the recombination junctions in the circular progeny virus indicated that most were generated by nonhomologous recombination during the excision event. The release of the CaMV viral genomes from an integrated copy was not dependent upon the application of environmental stresses but occurred with greater frequency with either age or the late stages of plant maturation.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号