首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   319篇
  免费   24篇
  343篇
  2021年   7篇
  2019年   3篇
  2018年   2篇
  2016年   2篇
  2015年   7篇
  2014年   10篇
  2013年   14篇
  2012年   10篇
  2011年   14篇
  2010年   15篇
  2009年   8篇
  2008年   23篇
  2007年   17篇
  2006年   18篇
  2005年   7篇
  2004年   14篇
  2003年   14篇
  2002年   13篇
  2001年   8篇
  2000年   7篇
  1999年   7篇
  1998年   4篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1991年   3篇
  1990年   6篇
  1989年   7篇
  1988年   2篇
  1987年   6篇
  1986年   8篇
  1985年   5篇
  1984年   10篇
  1982年   5篇
  1981年   2篇
  1980年   5篇
  1979年   4篇
  1978年   6篇
  1977年   3篇
  1976年   4篇
  1974年   2篇
  1972年   2篇
  1970年   2篇
  1969年   3篇
  1928年   2篇
  1920年   1篇
  1919年   1篇
  1914年   2篇
排序方式: 共有343条查询结果,搜索用时 11 毫秒
61.

Background

The interrogation of proteomes (“proteomics”) in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine.

Methodology/Principal Findings

We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma). Our current assay measures 813 proteins with low limits of detection (1 pM median), 7 logs of overall dynamic range (∼100 fM–1 µM), and 5% median coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding signature of DNA aptamer concentrations, which is quantified on a DNA microarray. Our assay takes advantage of the dual nature of aptamers as both folded protein-binding entities with defined shapes and unique nucleotide sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to rapidly discover unique protein signatures characteristic of various disease states.

Conclusions/Significance

We describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine.  相似文献   
62.

Background

The pathogenesis of Alzheimer''s disease is attributed to misfolding of Amyloid-β (Aβ) peptides. Aβ is generated during amyloidogenic processing of Aβ-precursor protein (APP). Another characteristic of the AD brain is increased phosphorylation of APP amino acid Tyr682. Tyr682 is part of the Y682ENPTY687 motif, a docking site for interaction with cytosolic proteins that regulate APP metabolism and signaling. For example, normal Aβ generation and secretion are dependent upon Tyr682 in vitro. However, physiological functions of Tyr682 are unknown.

Methodology/Principal Findings

To this end, we have generated an APP Y682G knock-in (KI) mouse to help dissect the role of APP Tyr682 in vivo. We have analyzed proteolytic products from both the amyloidogenic and non-amyloidogenic processing of APP and measure a profound shift towards non-amyloidogenic processing in APP KI mice. In addition, we demonstrate the essential nature of amino acid Tyr682 for the APP/Fe65 interaction in vivo.

Conclusions/Significance

Together, these observations point to an essential role of APP intracellular domain for normal APP processing and function in vivo, and provide rationale for further studies into physiological functions associated with this important phosphorylation site.  相似文献   
63.
64.
Transgenic Arabidopsis (Arabidopsis thaliana) plants containing a monomeric copy of the cauliflower mosaic virus (CaMV) genome exhibited the generation of infectious, episomally replicating virus. The circular viral genome had been split within the nonessential gene II for integration into the Arabidopsis genome by Agrobacterium tumefaciens-mediated transformation. Transgenic plants were assessed for episomal infections at flowering, seed set, and/or senescence. The infections were confirmed by western blot for the CaMV P6 and P4 proteins, electron microscopy for the presence of icosahedral virions, and through polymerase chain reaction across the recombination junction. By the end of the test period, a majority of the transgenic Arabidopsis plants had developed episomal infections. The episomal form of the virus was infectious to nontransgenic plants, indicating that no essential functions were lost after release from the Arabidopsis chromosome. An analysis of the viral genomes recovered from either transgenic Arabidopsis or nontransgenic turnip (Brassica rapa var rapa) revealed that the viruses contained deletions within gene II, and in some cases, the deletions extended to the beginning of gene III. In addition, many of the progeny viruses contained small regions of nonviral sequence derived from the flanking transformation vector. The nature of the nucleotide sequences at the recombination junctions in the circular progeny virus indicated that most were generated by nonhomologous recombination during the excision event. The release of the CaMV viral genomes from an integrated copy was not dependent upon the application of environmental stresses but occurred with greater frequency with either age or the late stages of plant maturation.  相似文献   
65.
66.
67.
The nucleolus and Cajal bodies (CBs) are prominent interacting subnuclear domains involved in a number of crucial aspects of cell function. Certain viruses interact with these compartments but the functions of such interactions are largely uncharacterized. Here, we show that the ability of the groundnut rosette virus open reading frame (ORF) 3 protein to move viral RNA long distances through the phloem strictly depends on its interaction with CBs and the nucleolus. The ORF3 protein targets and reorganizes CBs into multiple CB-like structures and then enters the nucleolus by causing fusion of these structures with the nucleolus. The nucleolar localization of the ORF3 protein is essential for subsequent formation of viral ribonucleoprotein (RNP) particles capable of virus long-distance movement and systemic infection. We provide a model whereby the ORF3 protein utilizes trafficking pathways involving CBs to enter the nucleolus and, along with fibrillarin, exit the nucleus to form viral 'transport-competent' RNP particles in the cytoplasm.  相似文献   
68.
The past few years have seen a noticeable increase in the emergence of infectious diseases in wildlife, especially vector-borne diseases, presenting a challenge for the conservation of endangered species. One such vector-borne disease, avian malaria (Plasmodium spp.) is on the rise in New Zealand avifauna, threatening bird populations that are among the most extinction-prone in the world. Furthermore, recent reports have outlined an increase in deaths of native iconic bird species specifically due to this disease. In order to help manage breakouts of this pathogen at a local scale, we need a better understanding of potential drivers of the emergence of avian malaria in wild New Zealand avifauna. Here, we set to test the role of climatic drivers in synchronizing contacts between avian hosts and vectors, assess the temporal stability of transmission dynamics between years, and determine the role of introduced species in causing spill-over of this pathogen towards native species. Our study focused on three sites that were sampled regularly during two consecutive years in the austral summer, each site being adjacent to a breeding colony of Yellow-eyed penguins (Megadyptes antipodes). Our results reveal an overall temporal stability of avian malaria incidence patterns, with a decrease in infection throughout the austral summer for both sampled years. Moreover, we highlight a phylogenetic signal among sampled bird species, with introduced species being more heavily infected by avian malaria than their native counterparts. In contrast, we found no effect of the two climatic drivers investigated, temperature and rainfall, on mosquito abundance. Our results suggest a strong effect of alien species acting as reservoirs for diseases spilling-over towards immunologically naïve species, and provide conservation managers with a critical timeframe to control avian malaria breakouts.  相似文献   
69.
Yeager  P. E.  Foreman  C. L.  Sinsabaugh  R. L. 《Hydrobiologia》2001,448(1-3):71-81
Studies concerning the interactions between macroinvertebrate and microbial communities have been carried out for some time. However, most of these studies have been simple feeding relationships that as a group have produced ambiguous results. We perceive these relationships to be more complex, encompassing not only microbial population density but also structure and function. To further understand these relationships, we employed molecular and biochemical techniques to study microbial structural and functional diversity in relation to macrobenthic feeding pressure. We studied the effect of feeding by the three population densities of larval midge, Chironomus tentans, (Diptera: Chironomidae) on microbial community organization. No significant difference in microbial biomass carbon (10.0 mg/g DWS ±1.97) was seen between the three treatments. However, we did detect significant shifts in microbial structure and function with increases in midge population density. The activities of carbon (C) and nitrogen (N) acquiring enzymes were negatively correlated with midge population density. While the C:N ratio was positively correlated with midge population density, suggesting that while the concentration of nitrogen decreased, its availability to the chironomids increased. There was also a marked difference in microbial community structure with increasing midge population density. These shifts in microbial organization are indicative of a complex set of interactions between the microbial community and the chironomid larvae.  相似文献   
70.
BACKGROUND: The refractive index (RI) of cellular material provides fundamental biophysical information about the composition and organizational structure of cells. Efforts to describe the refractive properties of cells have been significantly impeded by the experimental difficulties encountered in measuring viable cell RI. In this report we describe a procedure for the application of quantitative phase microscopy in conjunction with confocal microscopy to measure the RI of a cultured muscle cell specimen. METHODS: The experimental strategy involved calculation of cell thickness by using confocal optical sectioning procedures, construction of a phase map of the same cell using quantitative phase microscopy, and selection of cellular regions of interest to solve for the cell RI. RESULTS: Mean cell thickness and phase values for six cell regions (five cytoplasmic and one nuclear) were determined. The average refractive index calculated for cytoplasmic and nuclear regions was 1.360 +/- 0.004. The uncertainty in the final RI value represents the technique measurement error. CONCLUSIONS: The methodology we describe for viable cell RI measurement with this prototype cell has broad generic application in the study of cell growth and functional responses. The RI value we report may be used in optical analyses of cultured cell structure and morphology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号