首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   501篇
  免费   36篇
  国内免费   1篇
  2023年   5篇
  2022年   7篇
  2021年   24篇
  2020年   12篇
  2019年   13篇
  2018年   13篇
  2017年   10篇
  2016年   20篇
  2015年   30篇
  2014年   25篇
  2013年   28篇
  2012年   59篇
  2011年   49篇
  2010年   26篇
  2009年   23篇
  2008年   19篇
  2007年   29篇
  2006年   25篇
  2005年   29篇
  2004年   21篇
  2003年   8篇
  2002年   10篇
  2001年   6篇
  2000年   7篇
  1999年   7篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   3篇
  1974年   1篇
  1969年   1篇
排序方式: 共有538条查询结果,搜索用时 125 毫秒
91.
Waxy (Wx) protein is a granule-bound starch synthase (GBSS) responsible for amylose production in cereal endosperm. Eight isolines of wheat (Triticum aestivum L.) having different combinations of presence and absence of three Wx proteins, Wx-A1, -B1, and -D1, were produced in order to elucidate the effect of Wx protein deficiencies on the apparent amylose content and starch-pasting properties. An improved SDS gel electrophoresis showed that ’Bai Huo’ (a parental wheat) carried a variant Wx-B1 protein from an allele, Wx-B1e. Thus, wheat lines of types 1, 2, 4, and 6 examined in this study contained a variant Wx-B1 allele and not the standard allele, Wx-B1a. The results from 3 years of experiments using 176 lines derived from two cross-combinations showed that apparent amylose content increased the least in type 8 (waxy) having no Wx proteins and, in ascending order, increased in type 5 (only the Wx-A1 protein is present) <type 7 (Wx-D1) <type 6 (Wx-B1) <type 3 (Wx-A1 and -D1) <type 4 (Wx-A1 and -B1) <type 2 (Wx-B1 and -D1) <type 1 (three Wx proteins). However, Tukey’ s studentized range test did not detect significant differences in some cases. Densitometric analysis suggested that the amylose content was related to the amount of the Wx protein in the eight types. Parameters in the Rapid Visco-Analyzer test and swelling power were correlated to amylose content. Consequently, amylose content and pasting properties of starch were determined to be influenced the most by the lack of the Wx-B1 protein, followed by a lack of Wx-D1, and leastly by the Wx-A1 deficiency, which indicated the presence of differential effects of the three null alleles for the Wx protein. Received: 1 February 1999 / Accepted: 10 April 1999  相似文献   
92.
Immune evasion by Treponema pallidum subspecies pallidum (T. pallidum) has been attributed to antigenic variation of its putative outer-membrane protein TprK. In TprK, amino acid diversity is confined to seven variable (V) regions, and generation of sequence diversity within the V regions occurs via a non-reciprocal segmental gene conversion mechanism where donor cassettes recombine into the tprK expression site. Although previous studies have shown the significant role of immune selection in driving accumulation of TprK variants, the contribution of baseline gene conversion activity to variant diversity is less clear. Here, combining longitudinal tprK deep sequencing of near clonal Chicago C from immunocompetent and immunosuppressed rabbits along with the newly developed in vitro cultivation system for T. pallidum, we directly characterized TprK alleles in the presence and absence of immune selection. Our data confirm significantly greater sequence diversity over time within the V6 region during syphilis infection in immunocompetent rabbits compared to immunosuppressed rabbits, consistent with previous studies on the role of TprK in evasion of the host immune response. Compared to strains grown in immunocompetent rabbits, strains passaged in vitro displayed low level changes in allele frequencies of TprK variable region sequences similar to that of strains passaged in immunosuppressed rabbits. Notably, we found significantly increased rates of V6 allele generation relative to other variable regions in in vitro cultivated T, pallidum strains, illustrating that the diversity within these hypervariable regions occurs in the complete absence of immune selection. Together, our results demonstrate antigenic variation in T. pallidum can be studied in vitro and occurs even in the complete absence of immune pressure, allowing the T. pallidum population to continuously evade the immune system of the infected host.  相似文献   
93.
Chemotherapy has been widely used as a clinical treatment for cancer over the years. However, its effectiveness is limited because of resistance of cancer cells to programmed cell death (PCD) after treatment with anticancer drugs. To elucidate the resistance mechanism, we initially focused on cancer cell-specific mitophagy, an autophagic degradation of damaged mitochondria. This is because mitophagy has been reported to provide cancer cells with high resistance to anticancer drugs. Our data showed that TRIP-Br1 oncoprotein level was greatly increased in the mitochondria of breast cancer cells after treatment with various anticancer drugs including staurosporine (STS), the main focus of this study. STS treatment increased cellular ROS generation in cancer cells, which triggered mitochondrial translocation of TRIP-Br1 from the cytosol via dephosphorylation of TRIP-Br1 by protein phosphatase 2A (PP2A). Up-regulated mitochondrial TRIP-Br1 suppressed cellular ROS levels. In addition, TRIP-Br1 rapidly removed STS-mediated damaged mitochondria by activating mitophagy. It eventually suppressed STS-mediated PCD via degradation of VDACI, TOMM20, and TIMM23 mitochondrial membrane proteins. TRIP-Br1 enhanced mitophagy by increasing expression levels of two crucial lysosomal proteases, cathepsins B and D. In conclusion, TRIP-Br1 can suppress the sensitivity of breast cancer cells to anticancer drugs by activating autophagy/mitophagy, eventually promoting cancer cell survival.  相似文献   
94.
In recent years, animal ethics issues have led researchers to explore nondestructive methods to access materials for genetic studies. Cicada exuviae are among those materials because they are cast skins that individuals left after molt and are easily collected. In this study, we aim to identify the most efficient extraction method to obtain high quantity and quality of DNA from cicada exuviae. We compared relative DNA yield and purity of six extraction protocols, including both manual protocols and available commercial kits, extracting from four different exoskeleton parts. Furthermore, amplification and sequencing of genomic DNA were evaluated in terms of availability of sequencing sequence at the expected genomic size. Both the choice of protocol and exuvia part significantly affected DNA yield and purity. Only samples that were extracted using the PowerSoil DNA Isolation kit generated gel bands of expected size as well as successful sequencing results. The failed attempts to extract DNA using other protocols could be partially explained by a low DNA yield from cicada exuviae and partly by contamination with humic acids that exist in the soil where cicada nymphs reside before emergence, as shown by spectroscopic measurements. Genomic DNA extracted from cicada exuviae could provide valuable information for species identification, allowing the investigation of genetic diversity across consecutive broods, or spatiotemporal variation among various populations. Consequently, we hope to provide a simple method to acquire pure genomic DNA applicable for multiple research purposes.  相似文献   
95.
Fiducial markers are widely used in image-guided radiation therapy to correct for setup error and organ motion. These markers, however, can cause dose perturbations in the target volume for patients undergoing external-beam radiation therapy. The goal of this study was to determine the dosimetric impact of various types of fiducial markers commonly used in patients receiving photon radiation therapy. Monte Carlo simulations based on a newly developed EGSnrcMP user code were used to investigate three types of gold fiducial markers and a carbon marker. A single photon field with each fiducial in various orientations and two parallel-opposed beams were simulated at 6-MV and 18-MV energies. The results indicated that dose perturbations depended on marker size, material, and orientation, as well as on incident beam energy. Maximum dose perturbations were found for a single 6-MV beam. The increase in dose reached a factor of 1.58 near the upstream surface of the gold marker because of electron backscatter. At the downstream surface, the dose was reduced to a factor of 0.53 at the same point without the marker. For the 18-MV beam, the maximum dose factor was 1.48 and the minimum dose factor was 0.66. For the two parallel-opposed beams, the maximum dose reduction was within 5% at 6 MV and 2% at 18 MV. Dose enhancement, however, remained significant, reaching factors of 1.20 and 1.33 for the two energies near the fiducial surface. Carbon fiducials caused dose perturbations of only ~1%.  相似文献   
96.

Cold-adapted bacteria primarily have two glucose 6-phosphate dehydrogenase isozymes (G6PD, also known as zwf), zwf-1 for the Entner–Doudoroff pathway and zwf-2 for the oxidative pentose phosphate pathway. Although the roles of zwfs in carbon metabolism and antioxidant defense have been reported, the biochemical properties of zwfs at low and moderate temperatures have not been fully described. In this study, we cloned and characterized zwf-1 (Pmzwf-1) and zwf-2 (Pmzwf-2) from a cold-adapted bacterium Pseudomonas mandelii JR-1. Pmzwf-1 and Pmzwf-2 were expressed in Escherichia coli BL21 (DE3) as soluble tetrameric proteins. Both Pmzwf proteins were active at 4 °C, but Pmzwf-1 exhibited overall better biochemical properties than those of Pmzwf-2, including 10–30% higher specific activity at 4–40 °C as well as consistent conformational flexibility and thermal stability in the 4–40 °C range. Pmzwf-2 showed reduced thermal stability at moderate temperatures. Furthermore, the mRNA expression of Pmzwf-1 was higher than that of Pmzwf-2 at both 4 °C and 25 °C. These results indicate that Pmzwfs are cold-adapted enzymes, but Pmzwf-1 can function at both low to moderate temperatures while Pmzwf-2 is primarily functional at low temperatures. Our results suggest distinct temperature adaptations of two G6PD isozymes in P. mandelii JR-1, adaptations that are metabolic pathway dependent.

  相似文献   
97.
The aquatic weed hydrilla (Hydrilla verticillata Royle) was discovered growing in the Potomac River, south of Alexandria, VA, in Kenilworth Aquatic Gardens, Washington, D.C., and in the Chesapeake and Ohio (C&O) Canal near Seneca, MD. Cultures in Florida of the Kenilworth clone produced male flowers. This is the first report of the occurrence of the male in the U.S. Two distinct isoenzyme patterns have been identified for plants from various locations in the U.S., corresponding to a monoecious strain and a dioecious female. The occurrence of the wild colonies of the monoecious Hydrilla greatly increase the potential for physiological diversity through sexual reproduction, which may have serious consequences for the management of this weed.  相似文献   
98.
Phosphatidylinositol 4‐phosphate 5‐kinase (PIP5K) family members generate phosphatidylinositol 4,5‐bisphosphate (PIP2), a critical lipid regulator of diverse physiological processes. The PIP5K‐dependent PIP2 generation can also act upstream of the oncogenic phosphatidylinositol 3‐kinase (PI3K)/Akt pathway. Many studies have demonstrated various mechanisms of spatiotemporal regulation of PIP5K catalytic activity. However, there are few studies on regulation of PIP5K protein stability. Here, we examined potential regulation of PIP5Kα, a PIP5K isoform, via ubiquitin‐proteasome system, and its implication for breast cancer. Our results showed that the ubiquitin ligase NEDD4 (neural precursor cell expressed, developmentally down‐regulated gene 4) mediated ubiquitination and proteasomal degradation of PIP5Kα, consequently reducing plasma membrane PIP2 level. NEDD4 interacted with the C‐terminal region and ubiquitinated the N‐terminal lysine 88 in PIP5Kα. In addition, PIP5Kα gene disruption inhibited epidermal growth factor (EGF)‐induced Akt activation and caused significant proliferation defect in breast cancer cells. Notably, PIP5Kα K88R mutant that was resistant to NEDD4‐mediated ubiquitination and degradation showed more potentiating effects on Akt activation by EGF and cell proliferation than wild‐type PIP5Kα. Collectively, these results suggest that PIP5Kα is a novel degradative substrate of NEDD4 and that the PIP5Kα‐dependent PIP2 pool contributing to breast cancer cell proliferation through PI3K/Akt activation is negatively controlled by NEDD4.  相似文献   
99.
In this paper we describe isolation and molecular characterization of human dihydroxyacetonephosphate acyltransferase (DAP-AT). The enzyme was extracted from rabbit Harderian gland peroxisomes and isolated as a trimeric complex by sucrose density gradient centrifugation. From peptide sequences matching EST-clones were obtained which allowed cloning and sequencing of the cDNA from a human cDNA library. The nucleotide-derived amino acid sequence revealed a protein consisting of 680 amino acid residues of molecular mass 77 187 containing a C-terminal type 1 peroxisomal targeting signal. Monospecific antibodies raised against this polypeptide efficiently immunoprecipitated DAP-AT activity from solubilized peroxisomal preparations, thus demonstrating that the cloned cDNA codes for DAP-AT.  相似文献   
100.
Three new species of Mahinda are described, bo from Vietnam, borneensis from Malaysian Borneo and sulawesiensis from northern Sulawesi. A key to the three known species is provided including the previously described species, saltator Krombein, 1983.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号