首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   972篇
  免费   73篇
  2023年   4篇
  2022年   6篇
  2021年   28篇
  2020年   10篇
  2019年   18篇
  2018年   11篇
  2017年   15篇
  2016年   28篇
  2015年   43篇
  2014年   55篇
  2013年   53篇
  2012年   60篇
  2011年   90篇
  2010年   55篇
  2009年   39篇
  2008年   62篇
  2007年   74篇
  2006年   68篇
  2005年   49篇
  2004年   44篇
  2003年   49篇
  2002年   49篇
  2001年   10篇
  2000年   4篇
  1999年   13篇
  1998年   5篇
  1997年   9篇
  1996年   4篇
  1995年   8篇
  1994年   8篇
  1993年   8篇
  1992年   3篇
  1991年   8篇
  1990年   5篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   4篇
  1985年   6篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   4篇
  1975年   2篇
  1973年   2篇
  1968年   1篇
  1967年   1篇
  1960年   1篇
排序方式: 共有1045条查询结果,搜索用时 31 毫秒
101.
102.
103.
104.
Fish track wastewater pollution to estuaries   总被引:1,自引:0,他引:1  
Excess nitrogen is a forceful agent of ecological change in coastal waters, and wastewater is a prominent source of nitrogen. In catchments where multiple sources of nitrogen pollution co-exist, biological indicators are needed to gauge the degree to which wastewater-N can propagate through the receiving food webs. The purpose of this study was to test whether estuarine fish are suitable as indicators of sewage-N pollution. Fish were analysed from three estuaries within a 100-km strip on the Australian East Coast. The estuaries differ substantially in wastewater loading: (1) the Maroochy Estuary receives a large fraction of the local shire’s treated sewage, (2) the Mooloolah Estuary has no licensed treated wastewater outfalls but marinas/harbours and stormwater may contribute nitrogen, and (3) the Noosa Estuary which neither receives licensed discharges nor has suspected wastewater loads. Sampling for fish included both high rainfall (‘wet’ season) and low rainfall (‘dry’ season) periods. Muscle-δ15N was the variable predicted to respond to treated wastewater loading, reflecting the relative enrichment in 15N resulting from the treatment process and distinguishing it from alternative N sources such as fertiliser and natural nitrogen inputs (both 15N-depleted). Of the 19 fish species occurring in all three estuaries, those from the Maroochy Estuary had significantly elevated δ15N values (up to 9.9‰), and inter-estuarine differences in fish-δ15N were consistent across seasons. Furthermore, not only did all fish from the estuary receiving treated wastewater carry a very distinctive sewage-N tissue signal, but enriched muscle-δ15N was also evident in all species sampled from the one estuary in which sewage contamination was previously only suspected (i.e. the Mooloolah Estuary: 0.2–4.8‰ enrichment over fish from reference system). Thus, fish-δ15N is a suitable indicator of wastewater-N not only in systems that receive large loads, but also for the detection of more subtle nitrogen inputs. Arguably, fish may be preferred indicators of sewage-N contamination because they: (1) integrate nitrogen inputs over long time periods, (2) have an element of ‘ecological relevance’ because fish muscle-δ15N reflect movement of sewage-N through the food chain, and (3) pollution assessments can usually be based on evidence from multiple species.  相似文献   
105.
106.
Protein aggregation has been associated with a number of human diseases, and is a serious problem in the manufacture of recombinant proteins. Of particular interest to the biotechnology industry is deleterious aggregation that occurs during the refolding of proteins from inclusion bodies. As a complement to experimental efforts, computer simulations of multi-chain systems have emerged as a powerful tool to investigate the competition between folding and aggregation. Here we report results from Langevin dynamics simulations of minimalist model proteins. Order parameters are developed to follow both folding and aggregation. By mapping natural units to real units, the simulations are shown to be carried out under experimentally relevant conditions. Data pertaining to the contacts formed during the association process show that multiple mechanisms for aggregation exist, but certain pathways are statistically preferred. Kinetic data show that there are multiple time scales for aggregation, although most association events take place at times much shorter than those required for folding. Last, we discuss results presented here as a basis for future work aimed at rational design of mutations to reduce aggregation propensity, as well as for development of small-molecular weight refolding enhancers.  相似文献   
107.
108.
Superquenching as a detector for microsphere-based flow cytometric assays.   总被引:1,自引:0,他引:1  
BACKGROUND: Fluorescent conjugated polymers display high fluorescence quantum yields and enhanced sensitivity to quenching (superquenching) by oppositely charged quenchers through energy or electron transfer. Fluorescent polymers and their quenchers are used in bead-based biosensor applications where the polymers are coated on particles. In this work, we investigate a detection method that utilizes superquenching on microspheres, which can be used for flow cytometric assays. METHODS: Microspheres were coated with the fluorescent cationic polyelectrolyte poly(p-phenylene-ethynylene) (PPE), and its superquenching by 9,10-anthraquinone-2,6-disulfonic acid (AQS) was examined by fluorometric methods in presence and in absence of a barrier to superquenching in the form of an anionic lipid bilayer. RESULTS: Flow cytometry detected superquenching of PPE on microspheres (MS-PPE) by AQS where high levels of reduction in fluorescence were observed. Adding different concentrations of AQS to MS-PPE yielded a Stern-Volmer quenching constant of 0.8x10(6) M-1. While forming an anionic lipid bilayer around the MS-PPE acted as a barrier to superquenching by AQS, disrupting the lipid bilayer allowed superquenching to take place. CONCLUSIONS: The sensitivity of flow cytometry in detecting fluorescence of microspheres and the amplified quenching sensitivity of fluorescent conjugated polymers both offer advantages over other fluorometric methods and conventional quenching detection. This study used superquenching of fluorescent polymers as a new tool in flow cytometry, thus combining the advantages offered by both method and detector. In addition, we employed the formation and the disruption of a supported lipid bilayer in mediating superquenching to offer new biosensing applications.  相似文献   
109.
S-nitrosation of the metal binding protein, metallothionein (MT) appears to be a critical link in affecting endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS)-derived nitric oxide (NO)-induced changes in cytoplasmic and nuclear labile zinc, respectively. Although low molecular weight S-nitrosothiols also appear to affect this signaling system, less is known about the ability of extracellular protein nitrosothiols to transnitrosate MT. Accordingly, we synthesized fluorescently labeled S-nitroso-albumin (SNO-albumin, a major protein S-nitrosothiol in plasma) and determined, via confocal microscopy in fixed tissue, that it is transported into cultured rat pulmonary vascular endothelial cells in a temperature sensitive fashion. The cells were transfected with an expression vector that encodes human MT-IIa cDNA sandwiched between enhanced cyan (donor) and yellow (acceptor) fluorescent proteins (FRET-MT) that can detect conformational changes in MT through fluorescence resonance energy transfer (FRET). SNO-albumin and the membrane-permeant low molecular weight S-nitroso-l-cysteine ethyl ester (l-SNCEE) caused a conformational change in FRET-MT as ascertained by full spectral laser scanning confocal microscopy in live rat pulmonary vascular endothelial cells, a result which is consistent with transnitrosation of the reporter molecule. Transnitrosation of FRET-MT by SNO-albumin, but not l-SNCEE, was sensitive to antisense oligonucleotide-mediated inhibition of the expression of cell surface protein disulfide isomerase (csPDI). These results extend the original observations of Ramachandran et al. (Ramachandran N, Root P, Jiang XM, Hogg PJ, Mutus B. Proc Natl Acad Sci U S A 98: 9539-9544, 2001) and suggest that csPDI-mediated denitrosation helps to regulate the ability of the major plasma NO carrier (SNO-albumin) to transnitrosate endothelial cell molecular targets (e.g. MT).  相似文献   
110.
Endocrine disrupting compounds (EDCs) are known to affect reproduction and development in marine invertebrates. In previous work, we have shown that developing sea urchin embryos were sensitive to estradiol and estrogenic EDCs at environmentally relevant concentrations in a tamoxifen-sensitive manner (Roepke et al. 2005. Aquat Toxicol 71:155-173). In this study, we report the effects of maternal exposure to EDCs on embryo sensitivity and regulation of an orphan steroid receptor in sea urchin eggs. Maternal exposures were conducted by injecting female Strongylocentrotus purpuratus sea urchins initiating oogenesis with two concentrations of estradiol, octylphenol, tributyltin and o, p-DDD for 8 weeks with an induced spawning before and after the injection cycle. Developing embryos were less sensitive to estradiol following maternal exposure to estradiol, octylphenol and DDD. The steroidogenesis inhibitor, spironolactone, and the aromatase inhibitor, formestane, affected normal sea urchin development with EC50 values of 18 and 2 microM, respectively. Binding of estradiol was demonstrated in homogenates supernatants of sea urchin embryos by filtration centrifugation and column chromatography, but saturation was not reached until 4-6 hr and was highly variable. Analysis of eggs from pre- and post-injection spawns using real-time Q-PCR for the mRNA of an orphan steroid receptor, SpSHR2, shows that receptor mRNA increased in eggs with estradiol, octylphenol and tributyltin but decreased with DDD. RIA showed that estradiol may be present during gastrulation. In summary, maternal exposure to estradiol and EDCs alters embryo sensitivity and regulates the expression of an orphan steroid receptor in the egg.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号