首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   488篇
  免费   29篇
  2023年   10篇
  2022年   7篇
  2021年   9篇
  2020年   13篇
  2019年   13篇
  2018年   6篇
  2017年   9篇
  2016年   10篇
  2015年   16篇
  2014年   26篇
  2013年   41篇
  2012年   33篇
  2011年   33篇
  2010年   29篇
  2009年   12篇
  2008年   24篇
  2007年   21篇
  2006年   23篇
  2005年   25篇
  2004年   13篇
  2003年   20篇
  2002年   4篇
  2001年   12篇
  2000年   7篇
  1999年   14篇
  1998年   9篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   6篇
  1992年   2篇
  1991年   5篇
  1990年   4篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   5篇
  1980年   2篇
  1979年   4篇
  1976年   2篇
  1975年   2篇
  1972年   2篇
  1970年   1篇
  1969年   1篇
  1966年   1篇
  1960年   1篇
排序方式: 共有517条查询结果,搜索用时 15 毫秒
101.
102.
103.
We have tested chronic exposure to 90Y beta radiation for its action as a complete tumor promoter, a stage I tumor promoter, or a stage II tumor promoter in SENCAR mouse skin. In skin initiated with a single application of 7,12,dimethylbenz[a]anthracene (DMBA, 10 nmol), chronic exposure to beta radiation as a complete promoter (0.5 Gy, twice/week, 13 weeks) produced no tumors and, when added to a complete chemical promoter (TPA), reduced tumor frequency about 30%. A similar result was observed when beta radiation was tested as a stage II promoter. DMBA-initiated mice that received chemical (12-O-tetradecanoylphorbol-13-acetate, TPA) stage I promotion followed by 13 weeks of beta-radiation exposure (0.5 Gy, twice/week) as stage II promotion produced essentially no tumors, and combining the same chronic beta-radiation exposure with chemical (mezerein) stage II promotion reduced tumor frequency about 20% when compared to a similar group that was not irradiated. Chronic beta-radiation exposure was tested two ways as a stage I tumor promoter in initiated skin that was subsequently treated with mezerein as a stage II promoter. Stage I promotion was shown to proceed with the passage of time, indicating this process occurs naturally in the absence of chemical or physical stimulation. Hyperthermia, previously shown to be a potent inhibitor of chemically stimulated stage I promotion, had no effect on the natural process, indicating at least some differences in mechanism between the two processes. The natural process was, in fact, inhibited by chemical tumor promoters, but not by radiation. In addition to the increase resulting from this natural process, tumor frequency was further increased slightly but significantly (12-15%, P less than or equal to 0.05) when chronic radiation exposure was given as a stage I promoter (0.5 Gy, twice/week, 13 weeks) subsequent to initiation, in spite of the expected 20% reduction resulting from this dose. Exposure of initiated animals to radiation (0.5 or 1.0 Gy, twice/week, 2 weeks) in addition to TPA as stage I promotion produced a similar increase in tumor frequency (P less than 0.02). At higher radiation doses, however, tumor frequency was reduced compared to unirradiated controls. In a third test as a stage I promoter, beta radiation (0.5 Gy twice/week, 4 weeks) was given prior to initiation with N-methyl-N'-nitro-N-nitrosoguanidine in animals subsequently promoted by TPA (twice/week, 13 weeks), and again the radiation slightly but significantly (P less than 0.03) increased tumor frequency compared to the unirradiated control group.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
104.
Linear alkyl benzene sulphonate (LAS), one of the main ingredients used in synthetic detergents to enhance their cleansing properties. Indiscriminate and untreated discharge of detergents and their residues in both lantic and lotic habitats pose a variety of ecological threats and also adversely affect aquatic fauna. In vivo, LAS metabolism and biotransformation occurs via monooxygenases in liver, leading to Reactive Oxygen Species, ROS, production and consequently oxidative stress by disturbing cellular antioxidant enzymatic equilibrium. Present study aims to evaluate the activities of two widely distributed antioxidant enzymes viz., catalase (CAT) and superoxide dismutase (SOD) and ROS induced histological impairments in liver of freshwater fish, Channa punctatus. For the estimation of oxidative stress and hepatic impairments, well acclimatized fishes were divided in three groups. Fish of group G1 serves as control whereas fish of the other two groups, G2 and G3 were exposed to two fractions, 1/20th and 1/10th of 96 h LC50 of LAS for 24, 48, 72 and 96 h of exposure periods. Our results showed a significant induction in CAT and SOD activities in liver tissue of C. punctatus in a dose and time dependent manner. ROS induced histopathological impairments in hepatic tissues are characterized by loosely arranged, irregularly distributed and degenerated hepatocytes with increased vacuolization and pyknotic nuclei. The results are quite suggestive that LAS intoxication generates oxidative stress by ROS production which brings about histopathological impairments in exposed fish.  相似文献   
105.
The photoinhibition of photosynthesis was investigated on intact attached leaves and isolated thylakoid membranes of Populus deltoides.Our studies demonstrate that in intact leaves photoinhibition takes place under high irradiance which is more pronounced at higher temperatures. No net loss of Dl and other proteins associated with photosystem II (PSII) were observed even after 64 % photoinhibition suggesting that the degradation of polypeptides associated with PSII is not the only key step responsible for photoinhibition as observed by other workers. Electron transport studies in isolated thylakoid membranes suggested water oxidation complex as one of the damaged site during high light exposure. The possible mechanisms of photoinhibition without net loss of D1 protein are discussed.  相似文献   
106.
More than two third area of our planet is covered by oceans and assessment of marine biodiversity is a challenging task. With the increasing global population, there is a tendency to exploit marine resources for food, energy and other requirements. This puts pressure on the fragile marine environment and necessitates sustainable conservation efforts. Marine species identification using traditional taxonomical methods is often burdened with taxonomic controversies. Here we discuss the comparatively new concept of DNA barcoding and its significance in marine perspective. This molecular technique can be useful in the assessment of cryptic species which is widespread in marine environment and linking the different life cycle stages to the adult which is difficult to accomplish in the marine ecosystem. Other advantages of DNA barcoding include authentication and safety assessment of seafood, wildlife forensics, conservation genetics and detection of invasive alien species (IAS). Global DNA barcoding efforts in the marine habitat include MarBOL, CeDAMar, CMarZ, SHARK-BOL, etc. An overview on DNA barcoding of different marine groups ranging from the microbes to mammals is revealed. In conjugation with newer and faster techniques like high-throughput sequencing, DNA barcoding can serve as an effective modern tool in marine biodiversity assessment and conservation.  相似文献   
107.
108.
1. Pure or impure C-type phospholipases hydrolysed rat liver microsomal phosphatides in situ at 5 degrees or 37 degrees C. At 5 degrees C mean hydrolysis of total phospholipids was 90% by Bacillus cereus and 75% by Clostridium perfringens (Clostridium welchii) C-type phospholipases. 2. Four degrees of inhibition of glucose 6-phosphatase (D-glucose 6-phosphate phosphohydrolase; EC 3.1.3.9) resulted. (a) At 37 degrees C inhibition was virtually complete and apparently irreversible. (b) At 5 degrees C phospholipase C inhibited 50-87% of the activity expressed by intact control microsomal fractions. (c) Bovine serum albumin present during delipidation alleviated most of this inhibition: at 5 degrees C phospholipase C plus bovine serum albumin inhibited by 0-35% (mean 18%):simultaneous stimulation by the destruction of its latency seems to offset glucose 6-phosphatase inhibition, sometimes completely. (d) If latency was first destroyed, phospholipase C plus bovine serum albumin inhibited 30-50% of total glucose 6-phosphatase activity at 5 degrees C. Only this inhibition is likely largely to reflect the lower availability of phospholipids, essential for maximal enzyme activity, as it is virtually completely reversed by added phospholipid dispersions. Co-dispersions of phosphatidylserine plus phosphatidylcholine (1:1, w/w) were especially effective but Triton X-100 was unable effectively to restore activity. 3. Considerable glucose 6-phosphatase activity survived 240min of treatment with phospholipase C at 5 degrees C, but in the absence of substrate or at physiological glucose 6-phosphate concentrations the delipidated enzyme was completely inactivated within 10min at 37 degrees C. However, 80mM-glucose 6-phosphate stabilized it and phospholipid dispersions substantially restored thermal stability. 4. It is concluded that glucose 6-phosphatase is at least partly phospholipid-dependent, and complete dependence is not excluded. For reasons discussed it is impossible yet to be certain which phospholipid class(es) the enzyme requires for activity.  相似文献   
109.
B Gysin  D Trivedi  D G Johnson  V J Hruby 《Biochemistry》1986,25(25):8278-8284
The hyperglycemia and ketosis of diabetes mellitus are generally associated with elevated levels of glucagon in the blood. This suggests that glucagon is a contributing factor in the metabolic abnormalities of diabetes mellitus. A glucagon-receptor antagonist might provide important evidence for glucagons's role in this disease. In this work we describe how we combined structural modifications that led to glucagon analogues with partial agonist activity to give glucagon analogues that can act as competitive antagonists of glucagon-stimulated adenylate cyclase activity. Using solid-phase synthesis methodology and preparative reverse-phase high-performance liquid chromatography, we synthesized the following seven glucagon analogues and obtained them in high purity: [D-Phe4,Tyr5,Arg12]glucagon (2); [D-Phe4,Tyr5,Lys17,18]glucagon (3); [Phe1,Glu3,Lys17,18]glucagon (4); [Glu3,Val5,Lys17,18]glucagon (5); [Asp3,D-Phe4,Ser5,Lys17,18]glucagon (6); I4-[Asp3,D-Phe4,Ser5,Lys17,18]glucagon (7); [Pro3]glucagon (8). Purity was assessed by enzymatic total hydrolysis, by chymotryptic peptide mapping, and by reverse-phase high-performance liquid chromatography. The new analogues were tested for specific binding, for their effect on the adenylate cyclase activity in rat liver membranes, and for their effect on the blood glucose levels in normal rats relative to glucagon. Analogues showing no adenylate cyclase activity were examined for their ability to act as antagonists by displacing glucagon-stimulated adenylate cyclase dose-response curves to the right (higher concentrations). The binding potencies of the new analogues relative to glucagon (= 100) were respectively 1.0 (2), 1.3 (3), 3.8 (4), 0.4 (5), 1.3 (6), 5.3 (7), and 3 (8). Glucagon analogues 3-5 and 8 were all weak partial agonists with EC50 values of 500 (3), 250 (4), 1600 (5), and 395 nM (8), respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
110.
The nature of the interactions between cytochrome c oxidase and the phospholipids in mitochondrial membranes has been investigated by varying the nature of the fatty acyl components of Saccharomyces cerevisiae. A double fatty acid yeast mutant, FAI-4C, grown in combinations of unsaturated (oleic, linoleic, linolenic, and eicosenoic) and saturated (lauric and palmitic) fatty acids, was employed to modify mitochondrial membranes. The supplemented fatty acids constituted a unique combination of different acyl chain lengths with varying degrees of unsaturation which were subsequently incorporated into mitochondrial phospholipids. Phosphatidylethanolamine and cardiolipin, the predominant phospholipids of the inner mitochondrial membrane, were characterized by their high levels of supplemented unsaturated fatty acids. Increasing the chain length or the degree of unsaturation of mitochondrial membrane phospholipids had no effect on altering the nature of the phospholipid polar head group but did result in a profound change on the specific activity of cytochrome c oxidase. When studied under conditions of different ionic strengths and pHs the enzyme's activity, as documented by Eadie-Hofstee plots, showed biphasic kinetics. The kinetic parameters for the low affinity reaction were greatly influenced by the changes in the membrane fatty acids and only marginal effects were noted at the high affinity reaction site. The discontinuities in the steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene, monitored at increasing temperatures, suggested that changes in membrane fluidity were conditioned by alterations in mitochondrial membrane fatty acid constituents. These results indicate that the lipid changes affecting the low affinity binding site of cytochrome c oxidase may be the result of lipid-protein interactions which lead to enzyme conformational changes or may be due to gross changes in membrane fluidity. It may, therefore, follow that this enzyme site may be embedded in or be juxtaposed to the outer surface of the inner mitochondrial membrane bilayer in contrast to the high affinity site which has been shown to be significantly above the membrane plane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号