首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   467篇
  免费   27篇
  2023年   10篇
  2022年   5篇
  2021年   9篇
  2020年   13篇
  2019年   13篇
  2018年   6篇
  2017年   8篇
  2016年   10篇
  2015年   15篇
  2014年   24篇
  2013年   40篇
  2012年   32篇
  2011年   33篇
  2010年   27篇
  2009年   12篇
  2008年   24篇
  2007年   21篇
  2006年   23篇
  2005年   22篇
  2004年   13篇
  2003年   20篇
  2002年   4篇
  2001年   12篇
  2000年   7篇
  1999年   13篇
  1998年   6篇
  1997年   4篇
  1996年   4篇
  1994年   3篇
  1993年   6篇
  1992年   2篇
  1991年   5篇
  1990年   4篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1980年   2篇
  1979年   3篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1972年   2篇
  1970年   1篇
  1969年   1篇
  1966年   1篇
  1960年   1篇
排序方式: 共有494条查询结果,搜索用时 15 毫秒
51.
52.
53.
54.
55.

Background

Sterol glycosyltransferases (SGTs) are ubiquitous but one of the most diverse group of enzymes of glycosyltransferases family. Members of this family modulate physical and chemical properties of secondary plant products important for various physiological processes. The role of SGTs has been demonstrated in the biosynthesis of pharmaceutically important molecules of medicinal plants like Withania somnifera.

Results

Analysis suggested conserved behaviour and high similarity in active sites of WsSGTs with other plant GTs. Substrate specificity of WsSGTs were analysed through docking performance of WsSGTs with different substrates (sterols and withanolides). Best docking results of WsSGTL1 in the form of stable enzyme-substrate complex having lowest binding energies were obtained with brassicasterol, transandrosteron and WsSGTL4 with solasodine, stigmasterol and 24-methylene cholesterol.

Conclusion

This study reveals topological characters and conserved nature of two SGTs from W. somnifera (WsSGTs) i.e. WsSGTL1 and WsSGTL4. However, besides being ubiquitous in nature and with broad substrate specificity, difference between WsSGTL1 and WsSGTL4 is briefly described by difference in stability (binding energy) of enzyme-substrate complexes through comparative docking.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0563-7) contains supplementary material, which is available to authorized users.  相似文献   
56.
In 2009, the Royal Botanic Gardens, Kew (UK) launched its Breathing Planet Programme. This 10 year programme seeks to re-align Kew’s work to develop plant-based solutions to the challenges of climate change. Further to the development of the Programme, Kew has undertaken a review of its science projects with relevance to mitigating the impacts of climate change on plant diversity and people. The review has allowed Kew to better understand its current strengths and weaknesses in this area in order to plan for the future. The findings of the review could be relevant for science programmes in other botanic gardens. Botanic gardens play a fundamental role in the conservation of biodiversity to mitigate climate change impacts. Knowledge and data on plant systematics, distribution and physiology is vital for modelling and monitoring the impacts of climate change, to help to identify plant species and habitats most at risk of losing their wild diversity. Kew’s Millennium Seed Bank Project will safeguard 25% of plant species by 2020, while in situ projects are improving the conservation of threatened habitats. One challenge is to make such activities relevant and useful to other scientists, conservation groups and policy makers working to address climate change. However, botanic gardens must also develop working practices and projects that specifically address the challenges of climate change. Kew and a global network of partners are doing this in a variety of ways, and examples will be presented in this paper.  相似文献   
57.
Aims: Variant translocations involving 9q, 22q and at least one additional genomic locus occur in 5-10% of the patients with chronic myeloid leukemia (CML). The mechanisms for the formation of these variant translocations are not fully characterized. Here we report CML cases presenting a variant translocation indicating two-step mechanism with rare/novel chromosomal rearrangement. Methods: Karyotype analysis was performed on metaphases obtained through short-term cultures of bone marrow and blood. Detection of BCR-ABL fusion gene was performed using dual-color dual-fusion (D-FISH) and extra signal (ES) translocation probes. BAC-FISH was also carried out. Results: In Patient 1, the third partner chromosome was der(11)(p15) with a 2F2G1R signal pattern, which is an unusual signal pattern with the two-step mechanism. Patients 2 and 3 showed typical positive (2F1G1R) signal pattern. In Patient 2, both the chromosome 22s were involved in variant formation. The second fusion was observed below the BCR gene of the second homologue. In Patient 3 the third chromosome was der(13)(q14). The fourth patient showed a variant pattern with BCR/ABL-ES probe involving der(X)(q13) region. Conclusion: The presence of different rearrangements of both 9q34 and 22q11 regions highlights the genetic heterogeneity of this subgroup of CML. In each case with variants, further studies with FISH, BAC-FISH or more advanced technique such as microarray should be performed. Future studies should be performed to confirm the presence of true breakpoint hot spots and assess their implications in CML with variant Ph.  相似文献   
58.
Bacteriorhodopsin (BR) is an integral membrane protein found in "purple membrane" (the Archaea cell membrane) mainly in Halobacteria. This protein absorbs green light (wavelength 500-650 nm, with the absorption maximum at 568 nm) and converts it into an electrochemical gradient. This gradient in turn is used for ATP production. The ability of BR to convert light energy into chemical energy or sunlight into electricity has been used in different applications mainly optical appliances but also for therapeutic/medical applications and research. This review surveys some of these applications that have been patented in the last five years.  相似文献   
59.
Mycobacterium tuberculosis cell envelope is a treasure house of biologically active lipids of fascinating molecular architecture. Although genetic studies have alluded to an array of genes in biosynthesis of complex lipids, their mechanistic, structural, and biochemical principles have not been investigated. Here, we have dissected the molecular logic underlying the biosynthesis of a virulence lipid phthiocerol dimycocerosate (PDIM). Cell-free reconstitution studies demonstrate that polyketide synthases, which are usually involved in the biosynthesis of secondary metabolites, are responsible for generating complex lipids in mycobacteria. We show that PapA5 protein directly transfers the protein bound mycocerosic acid analogs on phthiocerol to catalyze the final esterification step. Based on precise identification of biological functions of proteins from Pps cluster, we have rationally produced a nonmethylated variant of mycocerosate esters. Apart from elucidating mechanisms that generate chemical heterogeneity with PDIMs, this study also presents an attractive approach to explore host-pathogen interactions by altering mycobacterial surface coat.  相似文献   
60.

Background  

A wide spectrum of genetic diversity in mongoloids of India is well documented. Though all mongoloids of India are known to have originated from the Mongol region of China but the period and route of migration from their native land to different Himalayan regions is little known. Thus the studies on genomic diversity of people of Sikkim, a central Himalayan state of India with different migrant mongoloid groups, assume great significance in understanding the impact of migratory events in the genetic differentiation of populations. We therefore studied the genetic diversity on the basis of 13-tetra nucleotide and 2 penta nucleotide microsatellite loci for a total of 208 allele frequencies in three major populations of Sikkim, with different ethno history and time of settlement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号