首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   579篇
  免费   34篇
  国内免费   2篇
  615篇
  2024年   1篇
  2023年   5篇
  2022年   11篇
  2021年   35篇
  2020年   16篇
  2019年   33篇
  2018年   15篇
  2017年   13篇
  2016年   17篇
  2015年   51篇
  2014年   38篇
  2013年   47篇
  2012年   47篇
  2011年   63篇
  2010年   24篇
  2009年   18篇
  2008年   30篇
  2007年   30篇
  2006年   20篇
  2005年   22篇
  2004年   16篇
  2003年   14篇
  2002年   13篇
  2001年   4篇
  2000年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有615条查询结果,搜索用时 15 毫秒
61.
The potassium channel tetramerization domain-containing protein 7 (KCTD7) was named after the structural homology of its predicted N-terminal broad complex, tramtrack and bric à brac/poxvirus and zinc finger domain with the T1 domain of the Kv potassium channel, but its expression profile and cellular function are still largely unknown. We have recently reported a homozygous nonsense mutation of KCTD7 in patients with a novel form of autosomal recessive progressive myoclonic epilepsy. Here, we show that KCTD7 expression hyperpolarizes the cell membrane and reduces the excitability of transfected neurons in patch clamp experiments. We found the expression of KCTD7 in the hippocampal and Purkinje cells of the murine brain, an expression profile consistent with our patients’ phenotype. The effect on the plasma membrane resting potential is possibly mediated by Cullin-3, as we demonstrated direct molecular interaction of KCTD7 with Cullin-3 in co-immunoprecipitation assays. Our data link progressive myoclonic epilepsy to an inherited defect of the neuron plasma membrane’s resting potential in the brain.  相似文献   
62.
63.
Despite the protective role that blood brain barrier plays in shielding the brain, it limits the access to the central nervous system (CNS) which most often results in failure of potential therapeutics designed for neurodegenerative disorders 1,2. Neurodegenerative diseases such as Spinal Muscular Atrophy (SMA), in which the lower motor neurons are affected, can benefit greatly from introducing the therapeutic agents into the CNS. The purpose of this video is to demonstrate two different injection paradigms to deliver therapeutic materials into neonatal mice soon after birth. One of these methods is injecting directly into cerebral lateral ventricles (Intracerebroventricular) which results in delivery of materials into the CNS through the cerebrospinal fluid 3,4. The second method is a temporal vein injection (intravenous) that can introduce different therapeutics into the circulatory system, leading to systemic delivery including the CNS 5. Widespread transduction of the CNS is achievable if an appropriate viral vector and viral serotype is utilized. Visualization and utilization of the temporal vein for injection is feasible up to postnatal day 6. However, if the delivered material is intended to reach the CNS, these injections should take place while the blood brain barrier is more permeable due to its immature status, preferably prior to postnatal day 2. The fully developed blood brain barrier greatly limits the effectiveness of intravenous delivery. Both delivery systems are simple and effective once the surgical aptitude is achieved. They do not require any extensive surgical devices and can be performed by a single person. However, these techniques are not without challenges. The small size of postnatal day 2 pups and the subsequent small target areas can make the injections difficult to perform and initially challenging to replicate. Download video file.(37M, mov)  相似文献   
64.
65.
Mutations that allow escape from CD8 T-cell responses are common in HIV-1 and may attenuate pathogenesis by reducing viral fitness. While this has been demonstrated for individual cases, a systematic investigation of the consequence of HLA class I-mediated selection on HIV-1 in vitro replication capacity (RC) has not been undertaken. We examined this question by generating recombinant viruses expressing plasma HIV-1 RNA-derived Gag-Protease sequences from 66 acute/early and 803 chronic untreated subtype B-infected individuals in an NL4-3 background and measuring their RCs using a green fluorescent protein (GFP) reporter CD4 T-cell assay. In acute/early infection, viruses derived from individuals expressing the protective alleles HLA-B*57, -B*5801, and/or -B*13 displayed significantly lower RCs than did viruses from individuals lacking these alleles (P < 0.05). Furthermore, acute/early RC inversely correlated with the presence of HLA-B-associated Gag polymorphisms (R = −0.27; P = 0.03), suggesting a cumulative effect of primary escape mutations on fitness during the first months of infection. At the chronic stage of infection, no strong correlations were observed between RC and protective HLA-B alleles or with the presence of HLA-B-associated polymorphisms restricted by protective alleles despite increased statistical power to detect these associations. However, RC correlated positively with the presence of known compensatory mutations in chronic viruses from B*57-expressing individuals harboring the Gag T242N mutation (n = 50; R = 0.36; P = 0.01), suggesting that the rescue of fitness defects occurred through mutations at secondary sites. Additional mutations in Gag that may modulate the impact of the T242N mutation on RC were identified. A modest inverse correlation was observed between RC and CD4 cell count in chronic infection (R = −0.17; P < 0.0001), suggesting that Gag-Protease RC could increase over the disease course. Notably, this association was stronger for individuals who expressed B*57, B*58, or B*13 (R = −0.27; P = 0.004). Taken together, these data indicate that certain protective HLA alleles contribute to early defects in HIV-1 fitness through the selection of detrimental mutations in Gag; however, these effects wane as compensatory mutations accumulate in chronic infection. The long-term control of HIV-1 in some persons who express protective alleles suggests that early fitness hits may provide lasting benefits.The host immune response elicited by CD8+ cytotoxic T lymphocytes (CTLs) is a major contributor to viral control following human immunodeficiency virus type 1 (HIV-1) infection (6, 39), but antiviral pressure exerted by CTLs is diminished by the selection of escape mutations in targeted regions throughout the viral proteome (7, 18, 29, 35, 41, 45, 57). A comprehensive identification of HLA-associated viral polymorphisms has recently been achieved through population-based analyses of HIV-1 sequences and HLA class I types from different cohorts worldwide (3, 8, 13-15, 34, 43, 50, 56, 63). However, despite improved characterization of the sites and pathways of immune escape, effective ways to incorporate these findings into immunogen design remain an area of debate. A better understanding of the impact of escape mutations on viral fitness may provide novel directions for HIV-1 vaccines that are designed to attenuate pathogenesis.The development of innovative vaccine strategies that can overcome the extreme diversity of HIV is a key priority (4). One proposed approach is to target the most conserved T-cell epitopes, which presumably cannot escape from CTL pressure easily due to structural or functional constraints on the viral protein (55). Complementary approaches include the design of polyvalent and/or mosaic immunogens that incorporate commonly observed viral diversity (4, 38) or the specific targeting of vulnerable regions of the viral proteome that do escape but only at a substantial cost to viral replication capacity (RC) (1, 40). A chief target of such vaccine approaches is the major HIV-1 structural protein Gag, which is known to be highly immunogenic and to elicit CTL responses that correlate with the natural control of infection (22, 36, 66). Indeed, several lines of evidence support a relationship between the selection of CTL escape mutations and reduced HIV-1 fitness. These include the reversion of escape mutations following transmission to an HLA-mismatched recipient who cannot target the epitope (19, 24, 41) as well as reduced plasma viral load (pVL) set point following the transmission of certain escape variants from donors who expressed protective HLA alleles (17, 27). Notably, these in vivo observations have been made most often for variations within Gag that are attributed to CTL responses restricted by the protective alleles HLA-B*57 and -B*5801 (17, 19, 27, 41). Most recently, reduced in vitro RCs of clinical isolates and/or engineered strains encoding single or multiple escape mutations in Gag selected in the context of certain protective HLA alleles, including B*57, B*5801, B*27, and B*13, have been demonstrated (9, 10, 42, 53, 59, 62). Despite these efforts, the goal of a T-cell vaccine that targets highly conserved and attenuation-inducing sites is hampered by a lack of knowledge concerning the contribution of most escape mutations to HIV-1 fitness as well as a poor understanding of the relative influence of HLA on the viral RC at different stages of infection.The mutability of HIV-1 permits the generation of progeny viruses encoding compensatory mutations that restore normal protein function and/or viral fitness. Detailed studies have demonstrated that the in vitro RC of escape variants in human and primate immunodeficiency viruses can be enhanced by the addition of secondary mutations outside the targeted epitope (10, 20, 52, 59, 65). Thus, vaccine strategies aimed at attenuating HIV-1 must also consider, among other factors, the frequency, time course, and extent to which compensation might overcome attenuation mediated by CTL-induced escape. Despite its anticipated utility for HIV-1 vaccine design, systematic studies to examine the consequences of naturally occurring CTL escape and compensatory mutations on viral RC have not been undertaken.We have described previously an in vitro recombinant viral assay to examine the impact of Gag-Protease mutations on HIV-1 RC (47, 49). Gag and protease have been included in each virus to minimize the impact of sequence polymorphisms at Gag cleavage sites, which coevolve with changes in protease (5, 37). Using this approach, we have demonstrated that viruses derived from HIV-1 controllers replicated significantly less well than those derived from noncontrollers and that these differences were detectable at both the acute/early (49) and chronic (47) stages. Escape mutations in Gag associated with the protective HLA-B*57 allele, as well as putative compensatory mutations outside known CTL epitopes, contributed to this difference in RC (47). However, substantial variability was observed for viruses from controllers and noncontrollers, indicating that additional factors were likely to be involved. Benefits of this assay include its relatively high-throughput capacity as well as the fact that clinically derived HIV-1 sequences are used in their entirety. Thus, it is possible to examine a large number of “real-world” Gag-Protease sequences, to define an RC value for each one, and to identify sequences within the population of recombinant strains that are responsible for RC differences.Here, we use this recombinant virus approach to examine the contribution of HLA-associated immune pressure on Gag-Protease RC during acute/early (n = 66) and chronic (n = 803) infections in the context of naturally occurring HIV-1 subtype B isolates from untreated individuals. In a recent report (64), we employed this system to examine the Gag-Protease RC in a similar cohort of chronic HIV-1 subtype C-infected individuals. The results of these studies provide important insights into the roles of immune pressure and fitness constraints on HIV-1 evolution that may contribute to the rational design of an effective vaccine.  相似文献   
66.
During summer 2001, blue mussels Mytilus edulis with abnormal shell growth were collected near Krager?, southern Norway. The mussels had green spots in their mantle tissues, mainly posteriorly and ventrally, and in the adductor muscle. Mussels from 4 sites had a prevalence of green spots varying from 2 to 71% that correlated well with shell deformities. Histological examination revealed the presence of round or ovoid algae, 0.9 to 1.5 x 1.2 to 2.4 microm, free within haemocytes and in the lesions, characterised by an inflammatory response and the presence of cellular debris. The alga contain a relatively large nucleus, 1 chloroplast and 1 mitochondrion. Size and morphology suggest that the alga might be a picoeucaryot green alga. Infection of mussel tissues appears to start in the posterior mantle edge, near the siphons, and spread anterior-ventrally in the mantle connective and storage tissues-occasionally spots were also found in the gonad follicles. Large infected areas were also observed in sinuses within the adductor muscle. Only mussels that were 3 yr old or more were infected. Deformations apparently resulted from years of continuous shell formation by a contracted, partly deformed mantle. Most deformed mussels had eroded shells, allowing some light penetration through the exposed, thin nacre. Young, thin-shelled mussels were not infected. The present work suggests that the alga has, at least partially, a parasitic relationship with the mussels, and is associated with pathological alterations in mussel tissues.  相似文献   
67.
Studies were conducted to elucidate the importance of androgen-mediated induction of the extreme masculinization of the external genitalia in female spotted hyenas. Phallic size and shape; androgen receptor (AR) and alpha-actin expression; and sex-specific differences in phallic retractor musculature, erectile tissue, tunica albuginea, and urethra/urogenital sinus were examined in male and female fetuses from Day 30 of gestation to term. Similar outcomes were assessed in fetuses from dams treated with an AR blocker and a 5alpha-reductase inhibitor (antiandrogen treatment). Clitoral and penile development were already advanced at Day 30 of gestation and grossly indistinguishable between male and female fetuses throughout pregnancy. Sex-specific differences in internal phallic organization were evident at Gestational Day 45, coincident with AR expression and testicular differentiation. Antiandrogen treatment inhibited prostatic development in males and effectively feminized internal penile anatomy. We conclude that gross masculinization of phallic size and shape of male and female fetuses is androgen-independent, but that sexual dimorphism of internal phallic structure is dependent on fetal testicular androgens acting via AR in the relevant cells/tissues. Androgens secreted by the maternal ovaries and metabolized by the placenta do not appear to be involved in gross masculinization or in most of the sex differences in internal phallic structure.  相似文献   
68.

Background  

Size exclusion chromatography is the method of choice for separating free from liposome-encapsulated molecules. However, if the column is not presaturated with lipids this type of chromatography causes a significant loss of lipid material. To date, the mechanism of lipid retention is poorly understood. It has been speculated that lipid binds to the column material or the entire liposome is entrapped inside the void.  相似文献   
69.
Calcium acts as a universal signal that is responsible for controlling a spectrum of cellular processes ranging from fertilization to apoptosis. For a long time, calcium was regarded solely as an intracellular second messenger. However, the discovery that calcium can also act as an external ligand together with the molecular cloning of its cell surface receptor, the Calcium Sensing Receptor (CaSR), demonstrated that calcium also acts as an important extracellular or first messenger. Here, we give an overview of the main structural, pharmacological and physiological features of the CaSR and provide an assessment of its functions and cellular and molecular mechanisms of action. In addition, we propose possible avenues for future research into the trafficking of CaSR and the role(s) of this receptor in the central nervous system.  相似文献   
70.
Arrestins are important proteins, which regulate the function of serpentine heptahelical receptors and contribute to multiple signaling pathways downstream of receptors. The ubiquitous beta-arrestins are believed to function exclusively as monomers, although self-association is assumed to control the activity of visual arrestin in the retina, where this isoform is particularly abundant. Here the oligomerization status of beta-arrestins was investigated using different approaches, including co-immunoprecipitation of epitope-tagged beta-arrestins and resonance energy transfer (BRET and FRET) in living cells. At steady state and at physiological concentrations, beta-arrestins constitutively form both homo- and hetero-oligomers. Co-expression of beta-arrestin2 and beta-arrestin1 prevented beta-arrestin1 accumulation into the nucleus, suggesting that hetero-oligomerization may have functional consequences. Our data clearly indicate that beta-arrestins can exist as homo- and hetero-oligomers in living cells and raise the hypothesis that the oligomeric state may regulate their subcellular distribution and functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号