首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   16篇
  2023年   1篇
  2022年   3篇
  2020年   1篇
  2019年   1篇
  2016年   5篇
  2015年   4篇
  2014年   6篇
  2013年   2篇
  2012年   12篇
  2011年   11篇
  2010年   8篇
  2009年   2篇
  2008年   11篇
  2007年   7篇
  2006年   9篇
  2005年   9篇
  2004年   3篇
  2003年   6篇
  2002年   7篇
  2001年   1篇
  2000年   1篇
  1999年   5篇
  1998年   7篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   6篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1980年   2篇
  1979年   3篇
  1975年   1篇
  1974年   2篇
  1973年   4篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1966年   1篇
  1961年   1篇
  1959年   1篇
排序方式: 共有177条查询结果,搜索用时 15 毫秒
51.
A novel cell wall hydrolase encoded by the murA gene of Listeria monocytogenes is reported here. Mature MurA is a 66-kDa cell surface protein that is recognized by the well-characterized L. monocytogenes-specific monoclonal antibody EM-7G1. MurA displays two characteristic features: (i) an N-terminal domain with homology to muramidases from several gram-positive bacterial species and (ii) four copies of a cell wall-anchoring LysM repeat motif present within its C-terminal domain. Purified recombinant MurA produced in Escherichia coli was confirmed to be an authentic cell wall hydrolase with lytic properties toward cell wall preparations of Micrococcus lysodeikticus. An isogenic mutant with a deletion of murA that lacked the 66-kDa cell wall hydrolase grew as long chains during exponential growth. Complementation of the mutant strain by chromosomal reintegration of the wild-type gene restored expression of this murein hydrolase activity and cell separation levels to those of the wild-type strain. Studies reported herein suggest that the MurA protein is involved in generalized autolysis of L. monocytogenes.  相似文献   
52.

Background

Several approaches for gene therapy of cystic fibrosis using viral and non‐viral vectors are currently being undertaken. Nevertheless, the present data suggest that vectors currently being used will either have to be further modified or, alternatively, novel vector systems need to be developed. Recently, bacteria have been proven as suitable vehicles for DNA transfer to a wide variety of eukaryotic cells. In this study, we assessed the ability of the facultative intracellular pathogen Listeria monocytogenes to deliver a cDNA encoding the human cystic fibrosis transmembrane conductance regulator (CFTR) to CHO‐K1 cells, since these cells have been extensively used for heterologous CFTR expression.

Methods

An established in vitro gene transfer system based on antibiotic‐mediated lysis of intracellular L. monocytogenes was exploited to transfer eukaryotic expression plasmids. Transient as well as stable CFTR transgene expression was analyzed by microscopical and biochemical methods; functionality was tested by whole‐cell patch‐clamp recordings.

Results

L. monocytogenes mediated gene transfer to CHO‐K1 cells was facilitated by an improved transfection protocol. In addition, the use of the isogenic mutant L. monocytogenes hlyW491A, engineered to produce a hemolysin variant with low toxigenic activity, greatly enhanced the efficiency of gene transfer. This strain allowed the transfer of functional CFTR to CHO‐K1 cells.

Conclusions

This is the first demonstration of L. monoyctogenes mediated CFTR transgene transfer. The successful in vitro transfer suggests that L. monocytogenes might be a potential vector for cystic fibrosis gene therapy or alternative applications and deserves further investigation in vitro as well as in vivo. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   
53.
Listeriolysin (LLO) is a major virulence factor of Listeria monocytogenes, a Gram-positive bacterium that can cause life-threatening diseases. Various signalling events and cellular effects, including modulation of gene expression, are triggered by LLO through unknown mechanisms. Here, we demonstrate that LLO applied extracellularly at sublytic concentrations causes long-lasting oscillations of the intracellular Ca2+ level of human embryonic kidney cells; resulting from a pulsed influx of extracellular Ca2+ through pores that are formed by LLO in the plasma membrane. Calcium influx does not require the activity of endogenous Ca2+ channels. LLO-formed pores are transient and oscillate between open and closed states. Pore formation and Ca2+ oscillations were also observed after exposure of cells to native Listeria monocytogenes. Our data identify LLO as a tool used by Listeria monocytogenes to manipulate the intracellular Ca2+ level without direct contact of the bacterium with the target cell. As Ca2+ oscillations modulate cellular signalling and gene expression, our findings provide a potential molecular basis for the broad spectrum of Ca2+-dependent cellular responses induced by LLO during Listeria infection.  相似文献   
54.
55.
Mucosal melanoma (MM) is a rare subtype of melanoma with an aggressive clinical course. In cutaneous melanoma (CM), the absence of pigmentation and presence of NRAS/KRAS mutations are biomarkers indicating an aggressive clinical course with shorter overall survival. Similar data for MM are missing. We present the real-world outcome data in a cohort of genotyped MM patients and assessed the prognostic relevance of pigmentation- and NRAS/KRAS mutation status. We correlated pathological reports and clinical data with overall survival of patients with MM. Furthermore, we performed clinically integrated molecular genotyping and analyzed real world treatment regimens for covariates associated with clinical outcome. We identified 39 patients with available clinical and molecular data. Patients with amelanotic MM had a significantly shorter overall survival (p = .003). In addition, the presence of a NRAS or KRAS mutation was significantly associated with poor overall survival (NRAS or KRAS p = .024). Currently, it is unknown if the same prognostic relevance for the lack of pigmentation and RAS mutations in CM, exists in MM. Here we analyzed a cohort of MM for outcome measures and determined that two known prognostic biomarkers for CM are in fact novel prognosticators for MM.  相似文献   
56.
57.
Human cytomegalovirus (HCMV), a herpesvirus, is a ubiquitously distributed pathogen that causes severe disease in immunosuppressed patients and infected newborns. Efforts are underway to prepare effective subunit vaccines and therapies including antiviral antibodies. However, current vaccine efforts are hampered by the lack of information on protective immune responses against HCMV. Characterizing the B-cell response in healthy infected individuals could aid in the design of optimal vaccines and therapeutic antibodies. To address this problem, we determined, for the first time, the B-cell repertoire against glycoprotein B (gB) of HCMV in different healthy HCMV seropositive individuals in an unbiased fashion. HCMV gB represents a dominant viral antigenic determinant for induction of neutralizing antibodies during infection and is also a component in several experimental HCMV vaccines currently being tested in humans. Our findings have revealed that the vast majority (>90%) of gB-specific antibodies secreted from B-cell clones do not have virus neutralizing activity. Most neutralizing antibodies were found to bind to epitopes not located within the previously characterized antigenic domains (AD) of gB. To map the target structures of these neutralizing antibodies, we generated a 3D model of HCMV gB and used it to identify surface exposed protein domains. Two protein domains were found to be targeted by the majority of neutralizing antibodies. Domain I, located between amino acids (aa) 133-343 of gB and domain II, a discontinuous domain, built from residues 121-132 and 344-438. Analysis of a larger panel of human sera from HCMV seropositive individuals revealed positivity rates of >50% against domain I and >90% against domain II, respectively. In accordance with previous nomenclature the domains were designated AD-4 (Dom II) and AD-5 (Dom I), respectively. Collectively, these data will contribute to optimal vaccine design and development of antibodies effective in passive immunization.  相似文献   
58.

Background

Pathogenic bacteria maintain a multifaceted apparatus to resist damage caused by external stimuli. As part of this, the universal stress protein A (UspA) and its homologues, initially discovered in Escherichia coli K-12 were shown to possess an important role in stress resistance and growth in several bacterial species.

Methods and Findings

We conducted a study to assess the role of three homologous proteins containing the UspA domain in the facultative intracellular human pathogen Listeria monocytogenes under different stress conditions. The growth properties of three UspA deletion mutants (Δlmo0515, Δlmo1580 and Δlmo2673) were examined either following challenge with a sublethal concentration of hydrogen peroxide or under acidic conditions. We also examined their ability for intracellular survival within murine macrophages. Virulence and growth of usp mutants were further characterized in invertebrate and vertebrate infection models.Tolerance to acidic stress was clearly reduced in Δlmo1580 and Δlmo0515, while oxidative stress dramatically diminished growth in all mutants. Survival within macrophages was significantly decreased in Δlmo1580 and Δlmo2673 as compared to the wild-type strain. Viability of infected Galleria mellonella larvae was markedly higher when injected with Δlmo1580 or Δlmo2673 as compared to wild-type strain inoculation, indicating impaired virulence of bacteria lacking these usp genes. Finally, we observed severely restricted growth of all chromosomal deletion mutants in mice livers and spleens as compared to the load of wild-type bacteria following infection.

Conclusion

This work provides distinct evidence that universal stress proteins are strongly involved in listerial stress response and survival under both in vitro and in vivo growth conditions.  相似文献   
59.
Male infertility is a frequent medical condition, compromising approximately one in twenty men, with infections of the reproductive tract constituting a major etiological factor. Bacterial epididymo-orchitis results in acute inflammation most often caused by ascending canalicular infections from the urethra via the continuous male excurrent ductal system. Uropathogenic Escherichia coli (UPEC) represent a relevant pathogen in urogenital tract infections. To explore how bacteria can cause damage and cell loss and thus impair fertility, an in vivo epididymo-orchitis model was employed in rats by injecting UPEC strain CFT073 into the vas deference in close proximity to the epididymis. Seven days post infection bacteria were found predominantly in the testicular interstitial space. UPEC infection resulted in severe impairment of spermatogenesis by germ cell loss, damage of testicular somatic cells, a decrease in sperm numbers and a significant increase in TUNEL (+) cells. Activation of caspase-8 (extrinsic apoptotic pathway), caspase-3/−6 (intrinsic apoptotic pathway), caspase-1 (pyroptosis pathway) and the presence of 180 bp DNA fragments, all of which serve as indicators of the classical apoptotic pathway, were not observed in infected testis. Notably, electron microscopical examination revealed degenerative features of Sertoli cells (SC) in UPEC infected testis. Furthermore, the passive release of high mobility group protein B1 (HMGB1), as an indication of necrosis, was observed in vivo in infected testis. Thus, necrosis appears to be the dominant cell death pathway in UPEC infected testis. Substantial necrotic changes seen in Sertoli cells will contribute to impaired spermatogenesis by loss of function in supporting the dependent germ cells.  相似文献   
60.
Emerging clinical data support the notion that RV dysfunction is critical to the pathogenesis of cardiovascular disease and heart failure1-3. Moreover, the RV is significantly affected in pulmonary diseases such as pulmonary artery hypertension (PAH). In addition, the RV is remarkably sensitive to cardiac pathologies, including left ventricular (LV) dysfunction, valvular disease or RV infarction4. To understand the role of RV in the pathogenesis of cardiac diseases, a reliable and noninvasive method to access the RV structurally and functionally is essential.A noninvasive trans-thoracic echocardiography (TTE) based methodology was established and validated for monitoring dynamic changes in RV structure and function in adult mice. To impose RV stress, we employed a surgical model of pulmonary artery constriction (PAC) and measured the RV response over a 7-day period using a high-frequency ultrasound microimaging system. Sham operated mice were used as controls. Images were acquired in lightly anesthetized mice at baseline (before surgery), day 0 (immediately post-surgery), day 3, and day 7 (post-surgery). Data was analyzed offline using software.Several acoustic windows (B, M, and Color Doppler modes), which can be consistently obtained in mice, allowed for reliable and reproducible measurement of RV structure (including RV wall thickness, end-diastolic and end-systolic dimensions), and function (fractional area change, fractional shortening, PA peak velocity, and peak pressure gradient) in normal mice and following PAC.Using this method, the pressure-gradient resulting from PAC was accurately measured in real-time using Color Doppler mode and was comparable to direct pressure measurements performed with a Millar high-fidelity microtip catheter. Taken together, these data demonstrate that RV measurements obtained from various complimentary views using echocardiography are reliable, reproducible and can provide insights regarding RV structure and function. This method will enable a better understanding of the role of RV cardiac dysfunction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号