首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   22篇
  218篇
  2023年   1篇
  2021年   3篇
  2019年   5篇
  2017年   2篇
  2016年   5篇
  2015年   13篇
  2014年   13篇
  2013年   6篇
  2012年   10篇
  2011年   12篇
  2010年   10篇
  2009年   8篇
  2008年   5篇
  2007年   6篇
  2006年   3篇
  2005年   10篇
  2004年   11篇
  2003年   6篇
  2002年   4篇
  2001年   11篇
  2000年   9篇
  1999年   8篇
  1998年   7篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1991年   5篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1982年   3篇
  1981年   3篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1972年   3篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1956年   1篇
  1954年   1篇
  1889年   1篇
排序方式: 共有218条查询结果,搜索用时 15 毫秒
91.
Methane is oversaturated relative to the atmosphere in many rivers, yet its cycling and fate is poorly understood. While photosynthesis is the dominant source of autotrophic carbon to rivers, chemosynthesis and particularly methane oxidation could provide alternative sources of primary production where the riverbed is heavily shaded or at depth beneath the sediment surface. Here, we highlight geographically widespread methanotrophic carbon fixation within the gravel riverbeds of over 30 chalk rivers. In 15 of these, the potential for methane oxidation (methanotrophy) was also compared with photosynthesis. In addition, we performed detailed concurrent measurements of photosynthesis and methanotrophy in one large chalk river over a complete annual cycle, where we found methanotrophy to be active to at least 15 cm into the riverbed and to be strongly substrate limited. The seasonal trend in methanotrophic activity reflected that of the riverine methane concentrations, and thus the highest rates were measured in mid-summer. At the sediment surface, photosynthesis was limited by light for most of the year with heavy shading induced by dense beds of aquatic macrophytes. Across 15 rivers, in late summer, we conservatively calculated that net methanotrophy was equivalent to between 1% and 46% of benthic net photosynthetic production within the gravel riverbed, with a median value of 4%. Hence, riverbed chemosynthesis, coupled to the oxidation of methane, is widespread and significant in English chalk rivers.  相似文献   
92.
Two related polytopic membrane proteins of the major facilitator family, NarK and NarU, catalyse nitrate uptake, nitrite export and nitrite uptake across the Escherichia coli cytoplasmic membrane by an unknown mechanism. A 12-helix model of NarU was constructed based upon six alkaline phosphatase and beta-galactosidase fusions to NarK and the predicted hydropathy for the NarK family. Fifteen residues conserved in the NarK-NarU protein family were substituted by site-directed mutagenesis, including four residues that are essential for nitrate uptake by Aspergillus nidulans: arginines Arg(87) and Arg(303) in helices 2 and 8, and two glycines in a nitrate signature motif. Despite the wide range of substitutions studied, in no case did mutation result in loss of one biochemical function without simultaneous loss of all other functions. A NarU+ NirC+ strain grew more rapidly and accumulated nitrite more rapidly than the isogenic NarU+ NirC(-) strain. Only the NirC+ strain consumed nitrite rapidly during the later stages of growth. Under conditions in which the rate of nitrite reduction was limited by the rate of nitrite uptake, NirC+ strains reduced nitrite up to 10 times more rapidly than isogenic NarU+ strains, indicating that both nitrite efflux and nitrite uptake are largely dependent on NirC. Isotope tracer experiments with [15N]nitrate and [14N]nitrite revealed that [15N]nitrite accumulated in the extracellular medium even when there was a net rate of nitrite uptake and reduction. We propose that NarU functions as a single channel for nitrate uptake and nitrite expulsion, either as a nitrate-nitrite antiporter, or more likely as a nitrate/H+ or nitrite/H+ channel.  相似文献   
93.

Background

Cardiac time intervals have been described as a measure of cardiac performance, where prolongation, shortening and delay of the different time intervals have been evaluated as markers of cardiac dysfunction. A relatively recently developed method with improved ability to measure cardiac events is Tissue Doppler Imaging (TDI), allowing accurate measurement of myocardial movements.

Methods

We propose the state diagram of the heart as a new visualization tool for cardiac time intervals, presenting comparative, normalized data of systolic and diastolic performance, providing a more complete overview of cardiac function. This study aimed to test the feasibility of the state diagram method by presenting examples demonstrating its potential use in the clinical setting and by performing a clinical study, which included a comparison of the state diagram method with established echocardiography methods (E/E' ratio, LVEF and WMSI). The population in the clinical study consisted of seven patients with non ST-elevation myocardial infarction (NSTEMI) and seven control subjects, individually matched according to age and gender. The state diagram of the heart was generated from TDI curves from seven positions in the myocardium, visualizing the inter- and intraventricular function of the heart by displaying the cardiac phases.

Results

The clinical examples demonstrated that the state diagram allows for an intuitive visualization of pathological patterns as ischemia and dyssynchrony. Further, significant differences in percentage duration between the control group and the NSTEMI group were found in eight of the totally twenty phases (10 phases for each ventricle), e.g. in the transition phases (Pre-Ejection and Post-Ejection). These phases were significantly longer (> 2.18%) for the NSTEMI group than for the control group (p < 0.05). No significant differences between the groups were found for the established echocardiography methods.

Conclusion

The test results clearly indicate that the state diagram has potential to be an efficient tool for visualization of cardiac dysfunction and for detection of NSTEMI.  相似文献   
94.
Systems analysis of iron metabolism: the network of iron pools and fluxes   总被引:1,自引:0,他引:1  

Background  

Every cell of the mammalian organism needs iron as trace element in numerous oxido-reductive processes as well as for transport and storage of oxygen. The very versatility of ionic iron makes it a toxic entity which can catalyze the production of radicals that damage vital membranous and macromolecular assemblies in the cell. The mammalian organism maintains therefore a complex regulatory network of iron uptake, excretion and intra-body distribution. Intracellular regulation in different cell types is intertwined with a global hormonal signalling structure. Iron deficiency as well as excess of iron are frequent and serious human disorders. They can affect every cell, but also the organism as a whole.  相似文献   
95.
96.
A placebo is a treatment which is not effective through its direct action on the body, but works because of its effect on the patient's beliefs. From an evolutionary perspective, it is initially puzzling why, if people are capable of recovering, they need a placebo to do so. Based on an argument put forward by Humphrey [Great expectations: the evolutionary psychology of faith-healing and the placebo effect. In: Humphrey, N (2002). The mind made flesh. Oxford University Press, Oxford. 255–285], we present simple mathematical models of the placebo effect that involve a trade-off between the costs and benefits of allocating resources to a current problem. These models show why the effect occurs and how its magnitude and timing can depend on different factors. We identify a particular aspect of belief which may govern the effect and conclude that a deeper understanding of why the placebo effect exists may allow it to be invoked more easily in the future.  相似文献   
97.
Voltage-gated ion channels underlie electrical activity of neurons and are dynamically regulated by diverse cell signaling pathways that alter their phosphorylation state. Recent global mass spectrometric-based analyses of the mouse brain phosphoproteome have yielded a treasure trove of new data as to the extent and nature of phosphorylation of numerous ion channel principal or α subunits in mammalian brain. Here we compile and review data on 347 phosphorylation sites (261 unique) on 42 different voltage-gated ion channel α subunits that were identified in these recent studies. Researchers in the ion channel field can now begin to explore the role of these novel in vivo phosphorylation sites in the dynamic regulation of the localization, activity, and expression of brain ion channels through multisite phosphorylation of their principal subunits.  相似文献   
98.
Vertebrate retinal photoreceptors signal light by suppressing a circulating “dark current” that maintains their relative depolarization in the dark. This dark current is composed of an inward current through CNG channels and NCKX transporters in the outer segment that is balanced by outward current exiting principally from the inner segment. It has been hypothesized that Kv2.1 channels carry a predominant fraction of the outward current in rods. We examined this hypothesis by comparing whole cell, suction electrode, and electroretinographic recordings from Kv2.1 knockout (Kv2.1−/−) and wild-type (WT) mouse rods. Single cell recordings revealed flash responses with unusual kinetics, and reduced dark currents that were quantitatively consistent with the measured depolarization of the membrane resting potential in the dark. A two-compartment (outer and inner segment) physiological model based on known ionic mechanisms revealed that the abnormal Kv2.1−/− rod photoresponses arise principally from the voltage dependencies of the known conductances and the NCKX exchanger, and a highly elevated fraction of inward current carried by Ca2+ through CNG channels due to the aberrant depolarization. Kv2.1−/− rods had shorter outer segments than WT and dysmorphic mitochondria in their inner segments. Optical coherence tomography of knockout animals demonstrated a slow photoreceptor degeneration over a period of 6 mo. Overall, these findings reveal that Kv2.1 channels carry 70–80% of the non-NKX outward dark current of the mouse rod, and that the depolarization caused by the loss of Kv2.1 results in elevated Ca2+ influx through CNG channels and elevated free intracellular Ca2+, leading to progressive degeneration.  相似文献   
99.
100.
Until recently, denitrification was thought to be the only significant pathway for N2 formation and, in turn, the removal of nitrogen in aquatic sediments. The discovery of anaerobic ammonium oxidation in the laboratory suggested that alternative metabolisms might be present in the environment. By using a combination of 15N-labeled NH4+, NO3, and NO2 (and 14N analogues), production of 29N2 and 30N2 was measured in anaerobic sediment slurries from six sites along the Thames estuary. The production of 29N2 in the presence of 15NH4+ and either 14NO3 or 14NO2 confirmed the presence of anaerobic ammonium oxidation, with the stoichiometry of the reaction indicating that the oxidation was coupled to the reduction of NO2. Anaerobic ammonium oxidation proceeded at equal rates via either the direct reduction of NO2 or indirect reduction, following the initial reduction of NO3. Whether NO2 was directly present at 800 μM or it accumulated at 3 to 20 μM (from the reduction of NO3), the rate of 29N2 formation was not affected, which suggested that anaerobic ammonium oxidation was saturated at low concentrations of NO2. We observed a shift in the significance of anaerobic ammonium oxidation to N2 formation relative to denitrification, from 8% near the head of the estuary to less than 1% at the coast. The relative importance of anaerobic ammonium oxidation was positively correlated (P < 0.05) with sediment organic content. This report of anaerobic ammonium oxidation in organically enriched estuarine sediments, though in contrast to a recent report on continental shelf sediments, confirms the presence of this novel metabolism in another aquatic sediment system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号