首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   22篇
  2023年   1篇
  2021年   3篇
  2019年   5篇
  2017年   2篇
  2016年   5篇
  2015年   13篇
  2014年   13篇
  2013年   6篇
  2012年   10篇
  2011年   12篇
  2010年   10篇
  2009年   8篇
  2008年   5篇
  2007年   6篇
  2006年   3篇
  2005年   10篇
  2004年   11篇
  2003年   6篇
  2002年   4篇
  2001年   11篇
  2000年   9篇
  1999年   8篇
  1998年   7篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1991年   5篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1982年   3篇
  1981年   3篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1972年   3篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1956年   1篇
  1954年   1篇
  1889年   1篇
排序方式: 共有218条查询结果,搜索用时 46 毫秒
151.
A recent study concluded that omnivorous plankton will shift from predatory to herbivorous feeding with climate warming, as consumers require increased carbon:phosphorous in their food. Although this is an appealing hypothesis, we suggest the conclusion is unfounded, based on the data presented, which seem in places questionable and poorly interpreted.  相似文献   
152.
153.
Caterpillar crawling is distinct from that of worms and molluscs; it consists of a series of steps in different body segments that can be compared to walking and running in animals with stiff skeletons. Using a three-dimensional kinematic analysis of horizontal crawling in Manduca sexta, the tobacco hornworm, we found that the phase of vertical displacement in the posterior segments substantially led changes in horizontal velocity and the segments appeared to pivot around the attached claspers. Both of the motions occur during vertebrate walking. In contrast, vertical displacement and horizontal velocity in the anterior proleg-bearing segments were in phase, as expected for running gaits coupled by elastic storage. We propose that this kinematic similarity to running results from the muscular compression and release of elastic tissues. As evidence in support of this proposal, the compression and extension of each segment were similar to harmonic oscillations in a spring, although changes in velocity were 70 degrees out of phase with displacement, suggesting that the spring was damped. Measurements of segment length within, and across, intersegmental boundaries show that some of these movements were caused by folding of the body wall between segments. These findings demonstrate that caterpillar crawling is not simply the forward progression of a peristaltic wave but has kinetic components that vary between segments. Although these movements can be compared to legged locomotion in animals with stiff skeletons, the underlying mechanisms of caterpillar propulsion, and in particular the contribution of elastic tissues, remain to be discovered.  相似文献   
154.
155.
Anthropogenic nitrogen pollution is a critical problem in freshwaters. Although riverbeds are known to attenuate nitrate, it is not known if large woody debris (LWD) can increase this ecosystem service through enhanced hyporheic exchange and streambed residence time. Over a year, we monitored the surface water and pore water chemistry at 200 points along a ~ 50 m reach of a lowland sandy stream with three natural LWD structures. We directly injected 15N-nitrate at 108 locations within the top 1.5 m of the streambed to quantify in situ denitrification, anammox and dissimilatory nitrate reduction to ammonia, which, on average, contributed 85, 10 and 5% of total nitrate reduction, respectively. Total nitrate reducing activity ranged from 0 to 16 µM h?1 and was highest in the top 30 cm of the stream bed. Depth, ambient nitrate and water residence time explained 44% of the observed variation in nitrate reduction; fastest rates were associated with slow flow and shallow depths. In autumn, when the river was in spate, nitrate reduction (in situ and laboratory measures) was enhanced around the LWD compared with non-woody areas, but this was not seen in the spring and summer. Overall, there was no significant effect of LWD on nitrate reduction rates in surrounding streambed sediments, but higher pore water nitrate concentrations and shorter residence times, close to LWD, indicated enhanced delivery of surface water into the streambed under high flow. When hyporheic exchange is too strong, overall nitrate reduction is inhibited due to short flow-paths and associated high oxygen concentrations.  相似文献   
156.
The localization of Shaker-type K+ channels in specialized domains of myelinated central nervous system axons was studied during development of the optic nerve. In adult rats Kv1.1, Kv1.2, Kv1.6, and the cytoplasmic β-subunit Kvβ2 were colocalized in juxtaparanodal zones. During development, clustering of K+ channels lagged behind that for nodal Na+ channels by about 5 days. In contrast to the PNS, K+ channels were initially expressed fully segregated from nodes and paranodes, the latter identified by immunofluorescence of Caspr, a component of axoglial junctions. Clusters of K+ channels were first detected at postnatal day 14 (P14) at a limited number of sites. Expression increased until all juxtaparanodes had immunoreactivity by P40. Developmental studies in hypomyelinating Shiverer mice revealed dramatically disrupted axoglial junctions, aberrant Na+ channel clusters, and little or no detectable clustering of K+ channels at all ages. These results suggest that in the optic nerve, compact myelin and normal axoglial junctions are essential for proper K+ channel clustering and localization.  相似文献   
157.
158.
The proleg withdrawal reflex in the caterpillar Manduca sexta is a robust, well-characterized system for investigating the integration of sensory information with centrally patterned behavior. The reflex is evoked by stimulating mechanosensory hairs--planta hairs--located at the tip of each proleg. We studied the expression of this reflex by combining video recordings and electromyographic recordings from the main retractor muscles of the proleg, the principal and accessory planta retractor muscles. In intact animals, the nature of the response depended on the motor context of the animal. Animals which were standing quietly showed great variability in both the kinematic properties of proleg withdrawal, and the corresponding muscle electrical activity. Animals which were hanging upside down from a wooden dowel exhibited a much faster reflex, with retraction of the proleg occurring slightly faster than in standing animals, but re-extension of the proleg to the substrate being considerably faster. In crawling animals, expression of the reflex depended on the phase of the crawling cycle during which stimulation occurred. The reflex in a given proleg was suppressed during stance phase of that proleg. During swing phase, however, planta hair stimulation evoked proleg withdrawal, resulting in an assistance reflex. In contrast. isolated abdomens showed much less variability in the reflex. A comparison of the relationship between retractor muscle activity and the resulting proleg movement showed significant correlations between both the duration of activity and the number of muscle spikes, and the size of the associated proleg withdrawal. This is a promising system in which to investigate how central neuronal circuits accomplish context-dependency of motor behavior.  相似文献   
159.
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号