首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   22篇
  2023年   1篇
  2021年   3篇
  2019年   5篇
  2017年   2篇
  2016年   5篇
  2015年   13篇
  2014年   13篇
  2013年   6篇
  2012年   10篇
  2011年   12篇
  2010年   10篇
  2009年   8篇
  2008年   5篇
  2007年   6篇
  2006年   3篇
  2005年   10篇
  2004年   11篇
  2003年   6篇
  2002年   4篇
  2001年   11篇
  2000年   9篇
  1999年   8篇
  1998年   7篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1991年   5篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1982年   3篇
  1981年   3篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1972年   3篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1956年   1篇
  1954年   1篇
  1889年   1篇
排序方式: 共有218条查询结果,搜索用时 15 毫秒
141.
Voltage-dependent sodium channels are uniformly distributed along unmyelinated axons, but are highly concentrated at nodes of Ranvier in myelinated axons. Here, we show that this pattern is associated with differential localization of distinct sodium channel alpha subunits to the unmyelinated and myelinated zones of the same retinal ganglion cell axons. In adult axons, Na(v)1.2 is localized to the unmyelinated zone, whereas Na(v)1.6 is specifically targeted to nodes. During development, Na(v)1.2 is expressed first and becomes clustered at immature nodes of Ranvier, but as myelination proceeds, Na(v)1.6 replaces Na(v)1.2 at nodes. In Shiverer mice, which lack compact myelin, Na(v)1.2 is found throughout adult axons, whereas little Na(v)1.6 is detected. Together, these data show that sodium channel isoforms are differentially targeted to distinct domains of the same axon in a process associated with formation of compact myelin.  相似文献   
142.
To investigate the role of chronic mitochondrial dysfunction on intracellular calcium signaling, we studied basal and stimulated cytosolic calcium levels in SH-SY5Y cells and a derived cell line devoid of mitochondrial DNA (Rho degrees ). Basal cytosolic calcium levels were slightly but significantly reduced in Rho degrees cells. The impact of chronic depletion of mitochondrial DNA was more evident following exposure of cells to carbachol, a calcium mobilizing agent. Calcium transients generated in Rho degrees cells following application of carbachol were more rapid than those in SH-SY5Y cells. A plateau phase of calcium recovery during calcium transients was present in SH-SY5Y cells but absent in Rho degrees cells. The rapid calcium transients in Rho degrees cells were due, in part, to increased reliance on Na(+)/Ca(2+) exchange activity at the plasma membrane and the plateau phase in calcium recovery in SH-SY5Y cells was dependent on the presence of extracellular calcium. We also examined whether mitochondrial DNA depletion influenced calcium responses to release of intracellular calcium stores. Rho degrees cells showed reduced responses to the uncoupler, FCCP, and the sarcoplasmic reticulum calcium ATPase inhibitor, thapsigargin. Acute exposure of SH-SY5Y cells to mitochondrial inhibitors did not mimic the results seen in Rho degrees cells. These results suggest that cytosolic calcium homeostasis in this neuron-like cell line is significantly altered as a consequence of chronic depletion of mitochondrial DNA.  相似文献   
143.
Compartmentalization of neuronal function is achieved by highly localized clustering of ion channels in discrete subcellular membrane domains. Voltage-gated potassium (Kv) channels exhibit highly variable cellular and subcellular patterns of expression. Here, we describe novel activity-dependent synaptic targeting of Kv4.2, a dendritic Kv channel, in cerebellar granule cells (GCs). In vivo, Kv4.2 channels are highly expressed in cerebellar glomeruli, specializations of GC dendrites that form synapses with mossy fibres. In contrast, in cultured GCs, Kv4.2 was found localized, not to dendrites but to cell bodies. To investigate the role of synaptic contacts, we developed a co-culture system with cells from pontine grey nucleus, the origin of mossy fibres. In these co-cultures, synaptic structures formed, and Kv4.2 was now targeted to these synaptic sites in a manner dependent on synaptic activity. Activation of NMDA- and/or AMPA-type glutamate receptors was necessary for the targeting of Kv4.2 in co-cultures, and activation of these receptor systems in GC monocultures induced dendritic targeting of Kv4.2 in the absence of synapse formation. These results indicate that the proper targeting of Kv4.2 channels is dynamically regulated by synaptic activity. This activity-dependent regulation of Kv4.2 localization provides a crucial yet dynamic link between synaptic activity and dendritic excitability.  相似文献   
144.
Neurons strictly regulate expression of a wide variety of voltage-dependent ion channels in their surface membranes to achieve precise yet dynamic control of intrinsic membrane excitability. Neurons also exhibit extreme morphological complexity that underlies diverse aspects of their function. Most ion channels are preferentially targeted to either the axonal or somatodendritic compartments, where they become further localized to discrete membrane subdomains. This restricted accumulation of ion channels enables local control of membrane signaling events in specific microdomains of a given compartment. Voltage-dependent K+ (Kv) channels act as potent modulators of diverse excitatory events such as action potentials, excitatory synaptic potentials, and Ca2+ influx. Kv channels exhibit diverse patterns of cellular expression, and distinct subtype-specific localization, in mammalian central neurons. Here we review the mechanisms regulating the abundance and distribution of Kv channels in mammalian neurons and discuss how dynamic regulation of these events impacts neuronal signaling.  相似文献   
145.
In light-producing cells (photocytes) of the firefly light organ,mitochondria are clustered in the cell periphery, positionedbetween the tracheolar air supply and the oxygen-requiring bioluminescentreactants which are sequestered in more centrally-localizedperoxisomes. This relative positioning suggests that mitochondriacould control oxygen availability for the light reaction. Wehypothesized that active cellular respiration would make theinterior regions of the photocytes relatively hypoxic, and thatthe "on" signal for production of bioluminescence might dependon inhibition of mitochondrial oxygen consumption, which wouldallow delivered oxygen to pass through the peripheral mitochondrialzone to reach peroxisomes deep in the cell interior. We publishedrecently that exogenous NO induces bioluminescence in the intactfirefly; that NO mediates octopamine-induced bioluminescencein the dissected lantern, and that nitric oxide synthase isabundant in cells of the tracheolar system of the light organ.Additional experiments showed that nitric oxide gas (NO) inhibitsrespiration in isolated lantern mitochondria. Inhibition isreversed by bright light, and this inhibition is relieved whenthe light is turned off. Altogether, the results support theidea that NO triggers light production by reversible inhibitionof mitochondrial respiration in lantern cells, and probablyin tracheolar cells as well. The data also suggest that thelight of bioluminescence itself relieves NO inhibition thuscontributing to rapid on/off switching. While other mechanismsmay be in play, NO production that is directly related to neuralinput appears to have a key role in the oxygen gating that controlsflash communication signals.  相似文献   
146.
Escherichia coli methylenetetrahydrofolate reductase (MTHFR) catalyzes the NADH-linked reduction of 5,10-methylenetetrahydrofolate (CH(2)-H(4)folate) to 5-methyltetrahydrofolate (CH(3)-H(4)folate) using flavin adenine dinucleotide (FAD) as cofactor. MTHFR is unusual among flavin oxidoreductases because it contains a conserved, negatively rather than positively charged amino acid (aspartate 120) near the N1-C2=O position of the flavin. At this location, Asp 120 is expected to influence the redox properties of the enzyme-bound FAD. Modeling of the CH(3)-H(4)folate product into the enzyme active site suggests that Asp 120 may also play crucial roles in folate binding and catalysis. We have replaced Asp 120 with Asn, Ser, Ala, Val, and Lys and have characterized the mutant enzymes. Consistent with a loss of negative charge near the flavin, the midpoint potentials of the mutants increased from 17 to 30 mV. A small kinetic effect on the NADH reductive half-reaction was also observed as the mutants exhibited a 1.2-1.5-fold faster reduction rate than the wild-type enzyme. Catalytic efficiency (k(cat)/K(m)) in the CH(2)-H(4)folate oxidative half-reaction was decreased significantly (up to 70000-fold) and in a manner generally consistent with the negative charge density of position 120, supporting a major role for Asp 120 in electrostatic stabilization of the putative 5-iminium cation intermediate during catalysis. Asp 120 is also intimately involved in folate binding as increases in the apparent K(d) of up to 15-fold were obtained for the mutants. Examining the E(red) + CH(2)-H(4)folate reaction at 4 degrees C, we obtained, for the first time, evidence for the rapid formation of a reduced enzyme-folate complex with wild-type MTHFR. The more active Asp120Ala mutant, but not the severely impaired Asp120Lys mutant, demonstrated the species, suggesting a connection between the extent of complex formation and catalytic efficiency.  相似文献   
147.
The production of N2 gas via anammox was investigated in sediment slurries at in situ NO2- concentrations in the presence and absence of NO3-. With single enrichment above 10 microM 14NO2- or 14NO3- and 15NH4+, anammox activity was always linear (P < 0.05), in agreement with previous findings. In contrast, anammox exhibited a range of activity below 10 microM NO2- or NO3-, including an elevated response at lower concentrations. With 100 microM NO3-, no significant transient accumulation of NO2- could be measured, and the starting concentration of NO2- could therefore be regulated. With dual enrichment (1 to 20 microM NO2- plus 100 microM NO3-), there was a pronounced nonlinear response in anammox activity. Maximal activity occurred between 2 and 5 microM NO2-, but the amplitude of this peak varied across the study (November 2003 to June 2004). Anammox accounted for as much as 82% of the NO2- added at 1 microM in November 2003 but only for 15% in May 2004 and for 26 and 5% of the NO2- added at 5 microM for these two months, respectively. Decreasing the concentration of NO3- but holding NO2- at 5 microM decreased the significance of anammox as a sink for NO2-. The behavior of anammox was explored by use of a simple anammox-denitrification model, and the concept of a biphasic system for anammox in estuarine sediments is proposed. Overall, anammox is likely to be regulated by the availability of NO3- and NO2- and the relative size or activity of the anammox population.  相似文献   
148.
149.
A recent study concluded that omnivorous plankton will shift from predatory to herbivorous feeding with climate warming, as consumers require increased carbon:phosphorous in their food. Although this is an appealing hypothesis, we suggest the conclusion is unfounded, based on the data presented, which seem in places questionable and poorly interpreted.  相似文献   
150.
Reichner  JS; Helgemo  SL; Hart  GW 《Glycobiology》1998,8(12):1173-1182
The ability of particular cell surface glycoproteins to recycle and become exposed to individual Golgi enzymes has been demonstrated. This study was designed to determine whether endocytic trafficking includes significant reentry into the overall oligosaccharide processing pathway. The Lec1 mutant of Chinese hamster ovary (CHO) cells lack N - acetylglucosaminyltransferase I (GlcNAc-TI) activity resulting in surface expression of incompletely processed Man5GlcNAc2 N -linked oligosaccharides. An oligosaccharide tracer was created by exoglycosylation of cell surface glycoproteins with purified porcine GlcNAc-TI and UDP-[3H]GlcNAc. Upon reculturing, all cell surface glycoproteins that acquired [3H]GlcNAc were acted upon by intracellular mannosidase II, the next enzyme in the Golgi processing pathway of complex N -linked oligosaccharides (t1/2= 3-4 h). That all radiolabeled cell surface glycoproteins were included in this endocytic pathway indicates a common intracellular compartment into which endocytosed cell surface glycoproteins return. Significantly, no evidence was found for continued oligosaccharide processing consistent with transit through the latter cisternae of the Golgi apparatus. These data indicate that, although recycling plasma membrane glycoproteins can be reexposed to individual Golgi-derived enzymes, significant reentry into the overall contiguous processing pathway is not evident.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号