首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254篇
  免费   16篇
  270篇
  2023年   3篇
  2022年   5篇
  2021年   13篇
  2020年   9篇
  2019年   7篇
  2018年   9篇
  2017年   9篇
  2016年   14篇
  2015年   21篇
  2014年   21篇
  2013年   19篇
  2012年   15篇
  2011年   20篇
  2010年   10篇
  2009年   9篇
  2008年   14篇
  2007年   13篇
  2006年   8篇
  2005年   11篇
  2004年   10篇
  2003年   4篇
  2002年   6篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
  1984年   1篇
  1981年   1篇
  1975年   1篇
排序方式: 共有270条查询结果,搜索用时 15 毫秒
1.
Our understanding of the gas exchange mechanisms in plant organs critically depends on insights in the three-dimensional (3-D) structural arrangement of cells and voids. Using synchrotron radiation x-ray tomography, we obtained for the first time high-contrast 3-D absorption images of in vivo fruit tissues of high moisture content at 1.4-microm resolution and 3-D phase contrast images of cell assemblies at a resolution as low as 0.7 microm, enabling visualization of individual cell morphology, cell walls, and entire void networks that were previously unknown. Intercellular spaces were always clear of water. The apple (Malus domestica) cortex contains considerably larger parenchyma cells and voids than pear (Pyrus communis) parenchyma. Voids in apple often are larger than the surrounding cells and some cells are not connected to void spaces. The main voids in apple stretch hundreds of micrometers but are disconnected. Voids in pear cortex tissue are always smaller than parenchyma cells, but each cell is surrounded by a tight and continuous network of voids, except near brachyssclereid groups. Vascular and dermal tissues were also measured. The visualized network architecture was consistent over different picking dates and shelf life. The differences in void fraction (5.1% for pear cortex and 23.0% for apple cortex) and in gas network architecture helps explain the ability of tissues to facilitate or impede gas exchange. Structural changes and anisotropy of tissues may eventually lead to physiological disorders. A combined tomography and internal gas analysis during growth are needed to make progress on the understanding of void formation in fruit.  相似文献   
2.
3.
Sorafenib is a multikinase inhibitor that induces apoptosis in human leukemia and other malignant cells. Recently, we demonstrated that sorafenib diminishes Mcl-1 protein expression by inhibiting translation through a MEK1/2-ERK1/2 signaling-independent mechanism and that this phenomenon plays a key functional role in sorafenib-mediated lethality. Here, we report that inducible expression of constitutively active MEK1 fails to protect cells from sorafenib-mediated lethality, indicating that sorafenib-induced cell death is unrelated to MEK1/2-ERK1/2 pathway inactivation. Notably, treatment with sorafenib induced endoplasmic reticulum (ER) stress in human leukemia cells (U937) manifested by immediate cytosolic-calcium mobilization, GADD153 and GADD34 protein induction, PKR-like ER kinase (PERK) and eukaryotic initiation factor 2alpha (eIF2alpha) phosphorylation, XBP1 splicing, and a general reduction in protein synthesis as assessed by [35S]methionine incorporation. These events were accompanied by pronounced generation of reactive oxygen species through a mechanism dependent upon cytosolic-calcium mobilization and a significant decline in GRP78/Bip protein levels. Interestingly, enforced expression of IRE1alpha markedly reduced sorafenib-mediated apoptosis, whereas knockdown of IRE1alpha or XBP1, disruption of PERK activity, or inhibition of eIF2alpha phosphorylation enhanced sorafenib-mediated lethality. Finally, downregulation of caspase-2 or caspase-4 by small interfering RNA significantly diminished apoptosis induced by sorafenib. Together, these findings demonstrate that ER stress represents a central component of a MEK1/2-ERK1/2-independent cell death program triggered by sorafenib.  相似文献   
4.
5.

Introduction

Dysregulation of acylcarnitines (AcylCNs) and amino acids metabolism have implicated in abnormality of fatty acid oxidation in type 2 diabetes (T2D). However, it is not well known whether altered plasma AcylCN, and amino acid profiles are associated with albuminuria or diabetic nephropathy (DN) in T2D.

Objective

The aim of this study was to elucidate alterations in plasma levels of AcylCNs and amino acids with respect to the T2D patients with various stages of albuminuria.

Methods

We recruited 52 healthy subjects as control, and 156 T2D patients which were divided into 52 normoalbuminuria, 52 microalbuminuria, and 52 macroalbuminuria. Plasma 37 AcylCNs and 12 amino acids were analyzed by tandem mass spectrometry.

Results

We found that T2D with normoalbuminuria and microalbuminuria had lower shot-, medium-, and long-chain AcylCNs, whereas T2D with macroalbuminuria had higher short-and medium-chain AcylCNs and lower long-chain AcylCNs than healthy subjects. Moreover, estimated glomerular filtration rate (eGFR) was a negative, independent and significant predictor of albumin to creatinine ratio (ACR) levels (β = ?0.376, P < 0.001), whereas plasma Low-density lipoprotein cholesterol (LDL-C) was significantly and positively associated with ACR levels (β = 0.169, P = 0.049). Furthermore, multivariate ordinal logistic regression analysis revealed that isobutyrylcarnitine (C4) was a positive, independent, and significant predictor of ACR levels with higher odds of having T2D patients with progression normoalbuminuria to microalbuminuria [OR = 9.93, 95 % CI (3.51–28.05), P < 0.001].

Conclusions

The findings suggest that plasma C4 may serve as a potential biomarker for the early stages of DN.
  相似文献   
6.
Vo MT  Lee KW  Kim TK  Lee YH 《Biotechnology letters》2007,29(12):1915-1920
The fadBA operon in the fatty acid β-oxidation pathway of P. putida KCTC1639 was blocked to induce a metabolic flux of the intermediates to the biosynthesis of medium chain-length PHA (mcl-PHA). Succinate at 150 mg l−1 stimulated cell growth and also the biosynthesis of medium chain-length-polyhydroxyalkanoate. pH-stat fed-batch cultivation of the fadA knockout mutant P. putida KCTC1639 was carried out for 60 h, in which mcl-PHA reached 8 g l−1 with a cell dry weight of 10.3 g l−1.  相似文献   
7.
The composition of microbial biofilms on silicone rubber facial prostheses was investigated and compared with the microbial flora on healthy and prosthesis-covered skin. Scanning electron microscopy showed the presence of mixed bacterial and yeast biofilms on and deterioration of the surface of the prostheses. Microbial culturing confirmed the presence of yeasts and bacteria. Microbial colonization was significantly increased on prosthesis-covered skin compared to healthy skin. Candida spp. were exclusively isolated from prosthesis-covered skin and from prostheses. Biofilms from prostheses showed the least diverse band-profile in denaturing gradient gel electrophoresis (DGGE) whereas prosthesis-covered skin showed the most diverse band-profile. Bacterial diversity exceeded yeast diversity in all samples. It is concluded that occlusion of the skin by prostheses creates a favorable niche for opportunistic pathogens such as Candida spp. and Staphylococcus aureus. Biofilms on healthy skin, skin underneath the prosthesis and on the prosthesis had a comparable composition, but the numbers present differed according to the microorganism.  相似文献   
8.
Biolayer interferometry is a novel method for quantifying macromolecules, such as proteins, in solution. The presence of other, non-binding molecules does not interfere with quantification, which allows one to measure the concentration of the molecule of interest in a crude mixture. Here we apply this method to determining the dynamic binding capacity of affinity resins.  相似文献   
9.
Human and mouse granzyme (Gzm)B both induce target cell apoptosis in concert with pore-forming perforin (Pfp); however the mechanisms by which other Gzms induce non-apoptotic death remain controversial and poorly characterised. We used timelapse microscopy to document, quantitatively and in real time, the death of target cells exposed to primary natural killer (NK) cells from mice deficient in key Gzms. We found that in the vast majority of cases, NK cells from wild-type mice induced classic apoptosis. However, NK cells from syngeneic Gzm B-deficient mice induced a novel form of cell death characterised by slower kinetics and a pronounced, writhing, ‘worm-like'' morphology. Dying cells initially contracted but did not undergo membrane blebbing, and annexin-V staining was delayed until the onset of secondary necrosis. As it is different from any cell death process previously reported, we tentatively termed this cell death ‘athetosis''. Two independent lines of evidence showed this alternate form of death was due to Gzm A: first, cell death was revealed in the absence of Gzm B, but was completely lost when the NK cells were deficient in both Gzm A and B; second, the athetotic morphology was precisely reproduced when recombinant mouse Gzm A was delivered by an otherwise innocuous dose of recombinant Pfp. Gzm A-mediated athetosis did not require caspase activation, early mitochondrial disruption or generation of reactive oxygen species, but did require an intact actin cytoskeleton and was abolished by latrunculin B and mycalolide B. This work defines an authentic role for mouse Gzm A in granule-induced cell death by cytotoxic lymphocytes.  相似文献   
10.
Seeds of soybean [Glycine max (L.) Merr.] accumulate more isoflavones than any tissue of any plant species. In other plant parts, isoflavones are usually released to counteract the effects of various biotic and abiotic stresses. Because of the benefits to the plant and positive implications that consumption may have on human health, increasing isoflavones is a goal of many soybean breeding programs. However, altering isoflavone levels through marker-assisted selection (MAS) has been impractical due to the small and often environmentally variable contributions that each individual quantitative trait locus (QTL) has on total isoflavones. In this study, we developed a Magellan × PI 437654 F7-RIL population to construct a highly saturated non-redundant linkage map that encompassed 451 SNP and SSR molecular markers and used it to locate genomic regions that govern accumulation of isoflavones in the seeds of soybean. Five QTLs were found that contribute to the concentration of isoflavones, having single or multiple additive effects on isoflavone component traits. We also validated a major locus which alone accounted for up to 10% of the phenotypic variance for glycitein, and 35–37% for genistein, daidzein and the sum of all three soybean isoflavones. This QTL was consistently associated with increased concentration of isoflavones across different locations, years and crosses. It was the most important QTL in terms of net increased amounts of all isoflavone forms. Our results suggest that this locus would be an excellent candidate to target for MAS. Also, several minor QTLs were identified that interacted in an additive-by-additive epistatic manner, to increase isoflavone concentration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号