首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3031篇
  免费   291篇
  国内免费   1篇
  2023年   13篇
  2022年   30篇
  2021年   56篇
  2020年   39篇
  2019年   36篇
  2018年   44篇
  2017年   42篇
  2016年   73篇
  2015年   122篇
  2014年   125篇
  2013年   151篇
  2012年   193篇
  2011年   186篇
  2010年   115篇
  2009年   125篇
  2008年   157篇
  2007年   154篇
  2006年   119篇
  2005年   144篇
  2004年   133篇
  2003年   135篇
  2002年   142篇
  2001年   64篇
  2000年   47篇
  1999年   52篇
  1998年   38篇
  1997年   30篇
  1996年   38篇
  1995年   29篇
  1994年   43篇
  1993年   26篇
  1992年   27篇
  1991年   32篇
  1990年   34篇
  1989年   38篇
  1988年   32篇
  1987年   36篇
  1986年   23篇
  1985年   28篇
  1984年   33篇
  1983年   15篇
  1982年   20篇
  1981年   16篇
  1978年   19篇
  1977年   14篇
  1976年   17篇
  1975年   12篇
  1973年   22篇
  1972年   12篇
  1970年   11篇
排序方式: 共有3323条查询结果,搜索用时 46 毫秒
111.
Presynaptic inhibition of transmission between Ia afferent terminals and alpha motoneurons (Ia PSI) is a major control mechanism associated with soleus H-reflex modulation during human locomotion. Rhythmic arm cycling suppresses soleus H-reflex amplitude by increasing segmental Ia PSI. There is a reciprocal organization in the human nervous system such that arm cycling modulates H-reflexes in leg muscles and leg cycling modulates H-reflexes in forearm muscles. However, comparatively little is known about mechanisms subserving the effects from leg to arm. Using a conditioning-test (C-T) stimulation paradigm, the purpose of this study was to test the hypothesis that changes in Ia PSI underlie the modulation of H-reflexes in forearm flexor muscles during leg cycling. Subjects performed leg cycling and static activation while H-reflexes were evoked in forearm flexor muscles. H-reflexes were conditioned with either electrical stimuli to the radial nerve (to increase Ia PSI; C-T interval  = 20 ms) or to the superficial radial (SR) nerve (to reduce Ia PSI; C-T interval  = 37–47 ms). While stationary, H-reflex amplitudes were significantly suppressed by radial nerve conditioning and facilitated by SR nerve conditioning. Leg cycling suppressed H-reflex amplitudes and the amount of this suppression was increased with radial nerve conditioning. SR conditioning stimulation removed the suppression of H-reflex amplitude resulting from leg cycling. Interestingly, these effects and interactions on H-reflex amplitudes were observed with subthreshold conditioning stimulus intensities (radial n., ∼0.6×MT; SR n., ∼ perceptual threshold) that did not have clear post synaptic effects. That is, did not evoke reflexes in the surface EMG of forearm flexor muscles. We conclude that the interaction between leg cycling and somatosensory conditioning of forearm H-reflex amplitudes is mediated by modulation of Ia PSI pathways. Overall our results support a conservation of neural control mechanisms between the arms and legs during locomotor behaviors in humans.  相似文献   
112.
113.
The vulnerability of beaked whales (Family: Ziphiidae) to intense sound exposure has led to interest in their behavioral responses to mid-frequency active sonar (MFAS, 3–8 kHz). Here we present satellite-transmitting tag movement and dive behavior records from Blainville's beaked whales (Mesoplodon densirostris) tagged in advance of naval sonar exercises at the Atlantic Undersea Test and Evaluation Center (AUTEC) in the Bahamas. This represents one of the largest samples of beaked whales individually tracked during sonar operations (n = 7). The majority of individuals (five of seven) were displaced 28–68 km after the onset of sonar exposure and returned to the AUTEC range 2–4 days after exercises ended. Modeled sound pressure received levels were available during the tracking of four individuals and three of those individuals showed declines from initial maxima of 145–172 dB re 1 μPa to maxima of 70–150 dB re 1 μPa following displacements. Dive behavior data from tags showed a continuation of deep diving activity consistent with foraging during MFAS exposure periods, but also suggested reductions in time spent on deep dives during initial exposure periods. These data provide new insights into behavioral responses to MFAS and have important implications for modeling the population consequences of disturbance.  相似文献   
114.
Long-distance migration in whales has historically been described as an annual, round-trip movement between high-latitude, summer feeding grounds, and low-latitude, winter breeding areas, but there is no consensus about why whales travel to the tropics to breed. Between January 2009 and February 2016, we satellite-tagged 62 antarctic killer whales (Orcinus orca) of four different ecotypes, of which at least three made short-term (6–8 weeks), long-distance (maximum 11,000 km, round trip), essentially nonstop, migrations to warm waters (SST 20°C–24°C), and back. We previously suggested that antarctic killer whales could conserve body heat in subfreezing (to −1.9°C) waters by reducing blood flow to their skin, but that this might preclude normal (i.e., continuous) epidermal molt, and necessitate periodic trips to warm waters for routine skin maintenance (“skin molt migration,” SMM). In contrast to the century-old “feeding/breeding” migration paradigm, but consistent with a “feeding/molting” hypothesis, the current study provides additional evidence that deferred skin molt could be the main driver of long-distance migration for antarctic killer whales. Furthermore, we argue that for all whales that forage in polar latitudes and migrate to tropical waters, SMM might also allow them to exploit rich prey resources in a physiologically challenging environment and maintain healthy skin.  相似文献   
115.
Escherichia coli Exonuclease I (ExoI) digests single-stranded DNA (ssDNA) in the 3′-5′ direction in a highly processive manner. The crystal structure of ExoI, determined previously in the absence of DNA, revealed a C-shaped molecule with three domains that form a central positively charged groove. The active site is at the bottom of the groove, while an extended loop, proposed to encircle the DNA, crosses over the groove. Here, we present crystal structures of ExoI in complex with four different ssDNA substrates. The structures all have the ssDNA bound in essentially the predicted manner, with the 3′-end in the active site and the downstream end under the crossover loop. The central nucleotides of the DNA form a prominent bulge that contacts the SH3-like domain, while the nucleotides at the downstream end of the DNA form extensive interactions with an ‘anchor’ site. Seven of the complexes are similar to one another, but one has the ssDNA bound in a distinct conformation. The highest-resolution structure, determined at 1.95 Å, reveals an Mg2+ ion bound to the scissile phosphate in a position corresponding to MgB in related two-metal nucleases. The structures provide new insights into the mechanism of processive digestion that will be discussed.  相似文献   
116.

Background and Aims

Isoprene is the most important volatile organic compound emitted by land plants in terms of abundance and environmental effects. Controls on isoprene emission rates include light, temperature, water supply and CO2 concentration. A need to quantify these controls has long been recognized. There are already models that give realistic results, but they are complex, highly empirical and require separate responses to different drivers. This study sets out to find a simpler, unifying principle.

Methods

A simple model is presented based on the idea of balancing demands for reducing power (derived from photosynthetic electron transport) in primary metabolism versus the secondary pathway that leads to the synthesis of isoprene. This model''s ability to account for key features in a variety of experimental data sets is assessed.

Key results

The model simultaneously predicts the fundamental responses observed in short-term experiments, namely: (1) the decoupling between carbon assimilation and isoprene emission; (2) a continued increase in isoprene emission with photosynthetically active radiation (PAR) at high PAR, after carbon assimilation has saturated; (3) a maximum of isoprene emission at low internal CO2 concentration (ci) and an asymptotic decline thereafter with increasing ci; (4) maintenance of high isoprene emissions when carbon assimilation is restricted by drought; and (5) a temperature optimum higher than that of photosynthesis, but lower than that of isoprene synthase activity.

Conclusions

A simple model was used to test the hypothesis that reducing power available to the synthesis pathway for isoprene varies according to the extent to which the needs of carbon assimilation are satisfied. Despite its simplicity the model explains much in terms of the observed response of isoprene to external drivers as well as the observed decoupling between carbon assimilation and isoprene emission. The concept has the potential to improve global-scale modelling of vegetation isoprene emission.  相似文献   
117.

Purpose

Dendritic cells (DCs) can induce strong tumor-specific T-cell immune responses. Constitutive upregulation of the mitogen-activated protein kinase (MAPK) pathway by a BRAFV600 mutation, which is present in about 50 % of metastatic melanomas, may be linked to compromised function of DCs in the tumor microenvironment. Targeting both MEK and BRAF has shown efficacy in BRAFV600 mutant melanoma.

Methods

We co-cultured monocyte-derived human DCs with melanoma cell lines pretreated with the MEK inhibitor U0126 or the BRAF inhibitor vemurafenib. Cytokine production (IL-12 and TNF-α) and surface marker expression (CD80, CD83, and CD86) in DCs matured with the Toll-like receptor 3/Melanoma Differentiation-Associated protein 5 agonist polyI:C was examined. Additionally, DC function, viability, and T-cell priming capacity were assessed upon direct exposure to U0126 and vemurafenib.

Results

Cytokine production and co-stimulation marker expression were suppressed in polyI:C-matured DCs exposed to melanoma cells in co-cultures. This suppression was reversed by MAPK blockade with U0126 and/or vemurafenib only in melanoma cell lines carrying a BRAFV600E mutation. Furthermore, when testing the effect of U0126 directly on DCs, marked inhibition of function, viability, and DC priming capacity was observed. In contrast, vemurafenib had no effect on DC function across a wide range of dose concentrations.

Conclusions

BRAFV600E mutant melanoma cells modulate DC through the MAPK pathway as its blockade can reverse suppression of DC function. MEK inhibition negatively impacts DC function and viability if applied directly. In contrast, vemurafenib does not have detrimental effects on important functions of DCs and may therefore be a superior candidate for combination immunotherapy approaches in melanoma patients.  相似文献   
118.
The notorious biofouling organism Dreissena polymorpha (the zebra mussel) attaches to a variety of surfaces using a byssus, a series of protein threads that connect the animal to adhesive plaques secreted onto hard substrata. Here, the use of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to characterize the composition of different regions of the byssus is reported. All parts of the byssus show mass peaks corresponding to small proteins in the range of 3.7–7 kDa, with distinctive differences between different regions. Indeed, spectra from thread and plaques are almost completely non-overlapping. In addition, several peaks were identified that are unique to the interfacial region of the plaque, and therefore likely represent specialized adhesive proteins. These results indicate a high level of control over the distribution of proteins, presumably with different functions, in the byssus of this freshwater species.  相似文献   
119.
Eleven Burkholderia cepacia-like isolates of human clinical and environmental origin were examined by a polyphasic approach including recA and 16S rRNA sequence analysis, multilocus sequence analysis (MLSA), DNA base content determination, fatty acid methyl ester analysis, and biochemical characterization. The results of this study demonstrate that these isolates represent a novel species within the B. cepacia complex (Bcc) for which we propose the name Burkholderia pseudomultivorans. The type strain is strain LMG 26883T (=CCUG 62895T). B. pseudomultivorans can be differentiated from other Bcc species by recA gene sequence analysis, MLSA, and several biochemical tests including growth at 42 °C, acidification of sucrose and adonitol, lysine decarboxylase and β-galactosidase activity, and esculin hydrolysis.  相似文献   
120.

Aims

Potatoes have an inadequate rooting system for efficient acquisition of water and minerals and use disproportionate amounts of irrigation and fertilizer. This research determines whether significant variation in rooting characteristics of potato exists, which characters correlate with final yield and whether a simple screen for rooting traits could be developed.

Methods

Twenty-eight genotypes of Solanum tuberosum groups Tuberosum and Phureja were grown in the field; eight replicate blocks to final harvest, while entire root systems were excavated from four blocks. Root classes were categorised and measured. The same measurements were made on these genotypes in the glasshouse, 2 weeks post emergence.

Results

In the field, total root length varied from 40 m to 112 m per plant. Final yield was correlated negatively with basal root specific root length and weakly but positively with total root weight. Solanum tuberosum group Phureja genotypes had more numerous roots and proportionally more basal than stolon roots compared with Solanum tuberosum, group Tuberosum genotypes. There were significant correlations between glasshouse and field measurements.

Conclusions

Our data demonstrate that variability in rooting traits amongst commercially available potato genotypes exists and a robust glasshouse screen has been developed. By measuring potato roots as described in this study, it is now possible to assess rooting traits of large populations of potato genotypes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号