首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2638篇
  免费   222篇
  国内免费   1篇
  2023年   12篇
  2022年   31篇
  2021年   54篇
  2020年   38篇
  2019年   34篇
  2018年   44篇
  2017年   43篇
  2016年   68篇
  2015年   110篇
  2014年   114篇
  2013年   135篇
  2012年   185篇
  2011年   162篇
  2010年   105篇
  2009年   111篇
  2008年   144篇
  2007年   132篇
  2006年   114篇
  2005年   129篇
  2004年   134篇
  2003年   111篇
  2002年   131篇
  2001年   46篇
  2000年   26篇
  1999年   39篇
  1998年   30篇
  1997年   24篇
  1996年   27篇
  1995年   27篇
  1994年   32篇
  1993年   18篇
  1992年   16篇
  1991年   18篇
  1990年   16篇
  1989年   15篇
  1988年   21篇
  1987年   27篇
  1985年   26篇
  1984年   28篇
  1982年   15篇
  1981年   15篇
  1980年   11篇
  1979年   14篇
  1978年   16篇
  1977年   18篇
  1976年   17篇
  1975年   11篇
  1973年   21篇
  1972年   11篇
  1971年   11篇
排序方式: 共有2861条查询结果,搜索用时 15 毫秒
991.
Consumption of fruit and vegetable products is commonly viewed as a potential risk factor for infection with enteropathogens such as Salmonella and Escherichia coli O157, with recent outbreaks linked to lettuce, spinach and tomatoes. Routes of contamination are varied and include application of organic wastes to agricultural land as fertilizer, contamination of waters used for irrigation with faecal material, direct contamination by livestock, wild animals and birds and postharvest issues such as worker hygiene. The ability of pathogens to survive in the field environment has been well studied, leading to the implementation of guidelines such as the Safe Sludge Matrix, which aim to limit the likelihood of viable pathogens remaining at point-of-sale. The behaviour of enteropathogens in the phyllosphere is a growing field of research, and it is suggested that inclusion in phyllosphere biofilms or internalization within the plant augments the survival. Improved knowledge of plant-microbe interactions and the interaction between epiphytic and immigrant micro-organisms on the leaf surface will lead to novel methods to limit enteropathogen survival in the phyllosphere.  相似文献   
992.
The malaria parasite, Plasmodium falciparum, invades the red blood cells (RBCs) of its human host and initiates a series of morphological rearrangements within the host cell cytoplasm. The mature RBC has no endogenous trafficking machinery; therefore, the parasite generates novel structures to mediate protein transport. These include compartments called the Maurer's clefts (MC), which play an important role in the trafficking of parasite proteins to the surface of the host cell. Recent electron tomography studies have revealed MC as convoluted flotillas of flattened discs that are tethered to the RBC membrane, prompting speculation that the MC could, in one respect, represent an extracellular equivalent of the Golgi apparatus. Visualization of both resident and cargo proteins has helped decipher the signals and routes for trafficking of parasite proteins to the MC and beyond.  相似文献   
993.
Evidence to suggest that trichloroethylene may be a human carcinogen comes mainly from two small epidemiological studies with supporting evidence from human toxicity and genotoxicity studies and from rodent cancer bioassays. Careful analysis of these data reveal marked inconsistencies between the data, differences in the conclusions drawn by various authorities reviewing the same data and, for certain key human studies, a complete absence of exposure data. Much of the rodent cancer data may be dismissed as not indicative of a human hazard because the tumors result from either peroxisome proliferation, or as a consequence of exceptionally high metabolic rates that are found uniquely in mouse tissues, or because the tumors only occur in the presence of overt toxicity. A common mechanism invoked to account for the development of renal tumors in both rats and humans is unproven, there is contrary evidence to suggest that this mechanism does not result in renal cancer, and alternative mechanisms have been proposed. Overall, the uncertainty and lack of consistency throughout the trichloroethylene studies, whether they are in humans, in animals, or in tests in vitro, lead to the conclusion that it would be wholly inappropriate to classify trichloroethylene as a human carcinogen.  相似文献   
994.
995.
The assembly of proteins into bacterial outer membranes is a key cellular process that we are only beginning to understand, mediated by the β‐barrel assembly machinery (BAM). Two crucial elements of that machinery are the core BAM complex and the translocation and assembly module (TAM), with each containing a member of the Omp85 superfamily of proteins: BamA in the BAM complex, TamA in the TAM. Here, we used the substrate protein FimD as a model to assess the selectivity of substrate interactions for the TAM relative to those of the BAM complex. A peptide scan revealed that TamA and BamA bind the β‐strands of FimD, and do so selectively. Chemical cross‐linking and molecular dynamics are consistent with this interaction taking place between the first and last strand of the TamA barrel domain, providing the first experimental evidence of a lateral gate in TamA: a structural element implicated in membrane protein assembly. We suggest that the lateral gates in TamA and BamA provide different environments for substrates to engage, with the differences observed here beginning to address how the TAM can be more effective than the BAM complex in the folding of some substrate proteins.  相似文献   
996.
Switchgrass (Panicum virgatum L.) has been the principal perennial herbaceous crop investigated for bioenergy production in North America given its high production potential, relatively low input requirements, and potential suitability for use on marginal lands. Few large trials have determined switchgrass yields at field scale on marginal lands, including analysis of production costs. Thus, a field‐scale study was conducted to develop realistic yield and cost estimates for diverse regions of the USA. Objectives included measuring switchgrass response to fertility treatments (0, 56, and 112 kg N ha?1) and generating corresponding estimates of production costs for sites with diverse soil and climatic conditions. Trials occurred in Iowa, New York, Oklahoma, South Dakota, and Virginia, USA. Cultivars and management practices were site specific, and field‐scale equipment was used for all management practices. Input costs were estimated using final harvest‐year (2015) prices, and equipment operation costs were estimated with the MachData model ($2015). Switchgrass yields generally were below those reported elsewhere, averaging 6.3 Mg ha?1 across sites and treatments. Establishment stand percent ranged from 28% to 76% and was linked to initial year production. No response to N was observed at any site in the first production year. In subsequent seasons, N generally increased yields on well‐drained soils; however, responses to N were nil or negative on less well‐drained soils. Greatest percent increases in response to 112 kg N ha?1 were 57% and 76% on well‐drained South Dakota and Virginia sites, where breakeven prices to justify N applications were over $70 and $63 Mg?1, respectively. For some sites, typically promoted N application rates may be economically unjustified; it remains unknown whether a bioenergy industry can support the breakeven prices estimated for sites where N inputs had positive effects on switchgrass yield.  相似文献   
997.
The perennial grass genus Miscanthus has great promise as biomass feedstock, but there are concerns about potential invasion outside production fields. While the sterile hybrid Miscanthus × giganteus is currently one of the leading feedstock options due to its low invasive potential, fertile varieties are being developed to reduce establishment costs, and their invasive risks need to be further assessed. We performed seed addition experiments in Ohio and Iowa, USA to examine the establishment, flowering, persistence, and shoot biomass per plot of a fertile M. × giganteus biotype (‘PowerCane’) and two Miscanthus sinensis biotypes, one feral, and one ornamental. Seeds were added to small, replicated plots in each of the 2 years under two seeding densities and two competition treatments, and plots were monitored for 2–3 years. The ‘PowerCane’ biotype established better, survived better, and produced greater amounts of biomass per plot than both M. sinensis biotypes. All three biotypes flowered by the second or third year after establishment, with inflorescences more numerous in ‘PowerCane’ and the Ornamental M. sinensis biotypes. Effects of seeding density and competition on these patterns were minor in most cases. Our research suggests that ‘PowerCane’ exhibits many traits shared by both biomass crops and invasive species: multi-year persistence, high biomass potential, and fertility. We suggest that the benefits of a seeded M. × giganteus should be carefully weighed against its increased invasive risk prior to deployment across the landscape.  相似文献   
998.
The human solute carriers (SLCs) comprise over 400 different transporters, organized into 65 families (http://slc.bioparadigms.org/) based on their sequence homology and transport function. SLCs are responsible for transporting extraordinarily diverse solutes across biological membranes, including inorganic ions, amino acids, lipids, sugars, neurotransmitters and drugs. Most of these membrane proteins function as coupled symporters (co-transporters) utilizing downhill ion (H+ or Na+) gradients as the driving force for the transport of substrate against its concentration gradient into cells. Other members work as antiporters (exchangers) that typically contain a single substrate-binding site with an alternating access mode of transport, while a few members exhibit channel-like properties. Dysfunction of SLCs is correlated with numerous human diseases and therefore they are potential therapeutic drug targets. In this review, we identified all of the SLC crystal structures that have been determined, most of which are from prokaryotic species. We further sorted all the SLC structures into four main groups with different protein folds and further discuss the well-characterized MFS (major facilitator superfamily) and LeuT (leucine transporter) folds. This review provides a systematic analysis of the structure, molecular basis of substrate recognition and mechanism of action in different SLC family members.  相似文献   
999.
1000.
Bacteria require high-efficiency uptake systems to survive and proliferate in nutrient-limiting environments, such as those found in host organisms. ABC transporters in the bacterial plasma membrane provide a mechanism for transport of many substrates. In this study, we examine an operon containing a periplasmic binding protein in Actinobacillus for its potential role in nutrient acquisition. The electron density map of 1.76 Å resolution obtained from the crystal structure of the periplasmic binding protein was best fit with a molecular model containing a pyridoxal-5′-phosphate (P5P/pyridoxal phosphate/the active form of vitamin B6) ligand within the protein''s binding site. The identity of the P5P bound to this periplasmic binding protein was verified by isothermal titration calorimetry, microscale thermophoresis, and mass spectrometry, leading us to name the protein P5PA and the operon P5PAB. To illustrate the functional utility of this uptake system, we introduced the P5PAB operon from Actinobacillus pleuropneumoniae into an Escherichia coli K-12 strain that was devoid of a key enzyme required for P5P synthesis. The growth of this strain at low levels of P5P supports the functional role of this operon in P5P uptake. This is the first report of a dedicated P5P bacterial uptake system, but through bioinformatics, we discovered homologs mainly within pathogenic representatives of the Pasteurellaceae family, suggesting that this operon exists more widely outside the Actinobacillus genus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号