首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   39篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2015年   6篇
  2013年   3篇
  2012年   8篇
  2011年   6篇
  2010年   7篇
  2009年   7篇
  2008年   11篇
  2007年   6篇
  2006年   6篇
  2005年   1篇
  2004年   6篇
  2003年   3篇
  2002年   7篇
  2001年   9篇
  2000年   7篇
  1999年   11篇
  1998年   7篇
  1997年   6篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1992年   9篇
  1991年   2篇
  1990年   1篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1972年   1篇
排序方式: 共有180条查询结果,搜索用时 78 毫秒
111.
Cells in the morphogenetic furrow of the Drosophila eye disc undergo a striking shape change immediately prior to their neuronal differentiation. We have isolated mutations in a novel gene, act up (acu), that is required for this shape change. acu encodes a homolog of yeast cyclase-associated protein, which sequesters monomeric actin; we show that acu is required to prevent actin filament polymerization in the eye disc. In contrast, profilin promotes actin filament polymerization, acting epistatically to acu. However, both acu and profilin are required to prevent premature Hedgehog-induced photoreceptor differentiation ahead of the morphogenetic furrow. These findings suggest that dynamic changes in actin filaments alter cell shape to control the movement of signals that coordinate a wave of differentiation.  相似文献   
112.
113.
Hormonally regulated programmed cell death in barley aleurone cells   总被引:13,自引:0,他引:13  
PC Bethke  JE Lonsdale  A Fath    RL Jones 《The Plant cell》1999,11(6):1033-1046
Cell death was studied in barley (cv Himalaya) aleurone cells treated with abscisic acid and gibberellin. Aleurone protoplasts incubated in abscisic acid remained viable in culture for at least 3 weeks, but exposure to gibberellin initiated a series of events that resulted in death. Between 4 and 8 days after incubation in gibberellin, >70% of all protoplasts died. Death, which occurred after cells became highly vacuolated, was manifest by an abrupt loss of plasma membrane integrity followed by rapid shrinkage of the cell corpse. Hydrolysis of DNA began before death and occurred as protoplasts ceased production of alpha-amylase. DNA degradation did not result in the accumulation of discrete low molecular weight fragments. DNA degradation and cell death were prevented by LY83583, an inhibitor of gibberellin signaling in barley aleurone. We conclude that cell death in aleurone cells is hormonally regulated and is the final step of a developmental program that promotes successful seedling establishment.  相似文献   
114.
115.
116.
Natural populations of widely‐distributed animals often exhibit clinal variation in phenotypic traits or in allele frequencies of a particular gene over their geographical range. A planktotrophic intertidal snail, Littorina keenae is broadly distributed along the north‐eastern Pacific coast through a large latitudinal range (24°50′N–43°18′N). We tested for latitudinal clines in two complex phenotypic traits – thermal tolerance and body size – and one single locus trait – heat shock cognate 70 (HSC70) – in L. keenae along almost its entire geographical range. We found only weak evidence for a latitudinal cline in the thermal tolerance and no evidence for a cline in allele frequencies at HSC70. However, as predicted by Bergmann's rule, we detected a strong latitudinal cline that accounted for 60% of the variance in body size (R2 = 0.598; P < 0.001). In contrast, body size did not significantly affect thermal tolerance. HSC70 showed no genetic differentiation among the populations, supporting our previous mitochondrial gene‐based estimate of high gene flow during this snail's free‐swimming larval stage. Given that L. keenae experiences panmixia along its species range, the observed size cline may be partially or entirely caused by a phenotypically plastic response to local thermal environments rather than by genetic divergence in body size among populations in response to locally optimizing natural selection. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 494–505.  相似文献   
117.

Background

Understanding the role of seascape in shaping genetic and demographic population structure is highly challenging for marine pelagic species such as cetaceans for which there is generally little evidence of what could effectively restrict their dispersal. In the present work, we applied a combination of recent individual-based landscape genetic approaches to investigate the population genetic structure of a highly mobile extensive range cetacean, the harbour porpoise in the eastern North Atlantic, with regards to oceanographic characteristics that could constrain its dispersal.

Results

Analyses of 10 microsatellite loci for 752 individuals revealed that most of the sampled range in the eastern North Atlantic behaves as a 'continuous' population that widely extends over thousands of kilometres with significant isolation by distance (IBD). However, strong barriers to gene flow were detected in the south-eastern part of the range. These barriers coincided with profound changes in environmental characteristics and isolated, on a relatively small scale, porpoises from Iberian waters and on a larger scale porpoises from the Black Sea.

Conclusion

The presence of these barriers to gene flow that coincide with profound changes in oceanographic features, together with the spatial variation in IBD strength, provide for the first time strong evidence that physical processes have a major impact on the demographic and genetic structure of a cetacean. This genetic pattern further suggests habitat-related fragmentation of the porpoise range that is likely to intensify with predicted surface ocean warming.  相似文献   
118.
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号