首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6878篇
  免费   795篇
  国内免费   2篇
  2021年   102篇
  2020年   69篇
  2019年   80篇
  2018年   108篇
  2017年   84篇
  2016年   149篇
  2015年   245篇
  2014年   249篇
  2013年   294篇
  2012年   345篇
  2011年   358篇
  2010年   214篇
  2009年   216篇
  2008年   282篇
  2007年   239篇
  2006年   269篇
  2005年   233篇
  2004年   217篇
  2003年   192篇
  2002年   239篇
  2001年   195篇
  2000年   174篇
  1999年   171篇
  1998年   85篇
  1997年   53篇
  1996年   71篇
  1995年   89篇
  1994年   66篇
  1993年   75篇
  1992年   147篇
  1991年   133篇
  1990年   155篇
  1989年   117篇
  1988年   129篇
  1987年   119篇
  1986年   105篇
  1985年   108篇
  1984年   92篇
  1983年   84篇
  1982年   83篇
  1981年   79篇
  1980年   74篇
  1979年   106篇
  1978年   96篇
  1977年   75篇
  1976年   72篇
  1975年   63篇
  1973年   60篇
  1972年   73篇
  1971年   56篇
排序方式: 共有7675条查询结果,搜索用时 31 毫秒
991.

Background

Mobile group II introns insert site-specifically into DNA target sites by a mechanism termed retrohoming in which the excised intron RNA reverse splices into a DNA strand and is reverse transcribed by the intron-encoded protein. Retrohoming is mediated by a ribonucleoprotein particle that contains the intron-encoded protein and excised intron RNA, with target specificity determined largely by base pairing of the intron RNA to the DNA target sequence. This feature enabled the development of mobile group II introns into bacterial gene targeting vectors (“targetrons”) with programmable target specificity. Thus far, however, efficient group II intron-based gene targeting reactions have not been demonstrated in eukaryotes.

Methodology/Principal Findings

By using a plasmid-based Xenopus laevis oocyte microinjection assay, we show that group II intron RNPs can integrate efficiently into target DNAs in a eukaryotic nucleus, but the reaction is limited by low Mg2+ concentrations. By supplying additional Mg2+, site-specific integration occurs in up to 38% of plasmid target sites. The integration products isolated from X. laevis nuclei are sensitive to restriction enzymes specific for double-stranded DNA, indicating second-strand synthesis via host enzymes. We also show that group II intron RNPs containing either lariat or linear intron RNA can introduce a double-strand break into a plasmid target site, thereby stimulating homologous recombination with a co-transformed DNA fragment at frequencies up to 4.8% of target sites. Chromatinization of the target DNA inhibits both types of targeting reactions, presumably by impeding RNP access. However, by using similar RNP microinjection methods, we show efficient Mg2+-dependent group II intron integration into plasmid target sites in zebrafish (Danio rerio) embryos and into plasmid and chromosomal target sites in Drosophila melanogster embryos, indicating that DNA replication can mitigate effects of chromatinization.

Conclusions/Significance

Our results provide an experimental foundation for the development of group II intron-based gene targeting methods for higher organisms.  相似文献   
992.

Background

Cancer patients carrying mutations in the dihydropyrimidine dehydrogenase gene (DPYD) have a high risk to experience severe drug-adverse effects following chemotherapy with fluoropyrimidine drugs such as 5-fluorouracil (5-FU) or capecitabine. The pretreatment detection of this impairment of pyrimidine catabolism could prevent serious, potentially lethal side effects. As known deleterious mutations explain only a limited proportion of the drug-adverse events, we systematically searched for additional DPYD variations associated with enhanced drug toxicity.

Methodology/Principal Findings

We performed a whole gene approach covering the entire coding region and compared DPYD genotype frequencies between cancer patients with good (n = 89) and with poor (n = 39) tolerance of a fluoropyrimidine-based chemotherapy regimen. Applying logistic regression analysis and sliding window approaches we identified the strongest association with fluoropyrimidine-related grade III and IV toxicity for the non-synonymous polymorphism c.496A>G (p.Met166Val). We then confirmed our initial results using an independent sample of 53 individuals suffering from drug-adverse-effects. The combined odds ratio calculated for 92 toxicity cases was 4.42 [95% CI 2.12–9.23]; p (trend)<0.001; p (corrected) = 0.001; the attributable risk was 56.9%. Comparing tumor-type matched sets of samples, correlation of c.496A>G with toxicity was particularly present in patients with gastroesophageal and breast cancer, but did not reach significance in patients with colorectal malignancies.

Conclusion

Our results show compelling evidence that, at least in distinct tumor types, a common DPYD polymorphism strongly contributes to the occurrence of fluoropyrimidine-related drug adverse effects. Carriers of this variant could benefit from individual dose adjustment of the fluoropyrimidine drug or alternate therapies.  相似文献   
993.
Visual perception begins with the absorption of a photon by an opsin pigment, inducing isomerization of its 11-cis-retinaldehyde chromophore. After a brief period of activation, the resulting all-trans-retinaldehyde dissociates from the opsin apoprotein rendering it insensitive to light. Restoring light sensitivity to apo-opsin requires thermal re-isomerization of all-trans-retinaldehyde to 11-cis-retinaldehyde via an enzyme pathway called the visual cycle in retinal pigment epithelial (RPE) cells. Vertebrates can see over a 10(8)-fold range of background illumination. This implies that the visual cycle can regenerate a visual chromophore over a similarly broad range. However, nothing is known about how the visual cycle is regulated. Here we show that RPE cells, functionally or physically separated from photoreceptors, respond to light by mobilizing all-trans-retinyl esters. These retinyl esters are substrates for the retinoid isomerase and hence critical for regenerating visual chromophore. We show in knock-out mice and by RNA interference in human RPE cells that this mobilization is mediated by a protein called "RPE-retinal G protein receptor" (RGR) opsin. These data establish that RPE cells are intrinsically sensitive to light. Finally, we show that in the dark, RGR-opsin inhibits lecithin:retinol acyltransferase and all-trans-retinyl ester hydrolase in vitro and that this inhibition is released upon exposure to light. The results of this study suggest that RGR-opsin mediates light-dependent translocation of all-trans-retinyl esters from a storage pool in lipid droplets to an "isomerase pool" in membranes of the endoplasmic reticulum. This translocation permits insoluble all-trans-retinyl esters to be utilized as substrate for the synthesis of a new visual chromophore.  相似文献   
994.
We have previously reported that EFA6, exchange factor for Arf6, is implicated upon E-cadherin engagement in the process of epithelial cell polarization. We had found that EFA6 acts through stabilization of the apical actin ring onto which the tight junction is anchored. Mutagenesis experiments showed that both the catalytic domain of EFA6 and its C-terminal domain were required for full EFA6 function. Here we address the contribution of the specific substrate of EFA6, the small G protein Arf6. Unexpectedly, depletion of Arf6 by RNA interference or expression of the constitutively active fast-cycling mutant (Arf6T157N) revealed that Arf6 plays an opposing role to EFA6 by destabilizing the apical actin cytoskeleton and the associated tight junction. However, in complementation experiments, when the C-terminal domain of EFA6 is co-expressed with Arf6T157N, it reverts the effects of Arf6T157N expressed alone to faithfully mimic the phenotypes induced by EFA6. In addition, we find that the two signaling pathways downstream of EFA6, i.e. the one originating from the activated Arf6GTP and the other one from the EFA6 C-terminal domain, need to be tightly balanced to promote the proper reorganization of the actin cytoskeleton. Altogether, our results indicate that to regulate the tight junction, EFA6 activates Arf6 through its Sec7 catalytic domain as it modulates this activity through its C-terminal domain.  相似文献   
995.
The rate, polarity, and symmetry of the flow of the plant hormone auxin are determined by the polar cellular localization of PIN-FORMED (PIN) auxin efflux carriers. Flavonoids, a class of secondary plant metabolites, have been suspected to modulate auxin transport and tropic responses. Nevertheless, the identity of specific flavonoid compounds involved and their molecular function and targets in vivo are essentially unknown. Here we show that the root elongation zone of agravitropic pin2/eir1/wav6/agr1 has an altered pattern and amount of flavonol glycosides. Application of nanomolar concentrations of flavonols to pin2 roots is sufficient to partially restore root gravitropism. By employing a quantitative cell biological approach, we demonstrate that flavonoids partially restore the formation of lateral auxin gradients in the absence of PIN2. Chemical complementation by flavonoids correlates with an asymmetric distribution of the PIN1 protein. pin2 complementation probably does not result from inhibition of auxin efflux, as supply of the auxin transport inhibitor N-1-naphthylphthalamic acid failed to restore pin2 gravitropism. We propose that flavonoids promote asymmetric PIN shifts during gravity stimulation, thus redirecting basipetal auxin streams necessary for root bending.  相似文献   
996.
997.
Biliary epithelia express high levels of CD44 in hepatobiliary diseases. The role of CD44-hyaluronic acid interaction in biliary pathology, however, is unclear. A rat model of hepatic cholestasis induced by bile duct ligation was employed for characterization of hepatic CD44 expression and extracellular hyaluronan distribution. Cell culture experiments were employed to determine whether hyaluronan can regulate cholangiocyte growth through interacting with adhesion molecule CD44. Biliary epithelial cells were found to express the highest level of CD44 mRNA among four major types of nonparenchymal liver cells, including Kupffer, hepatic stellate, and liver sinusoidal endothelial cells isolated from cholestatic livers. CD44-positive biliary epithelia lining the intrahepatic bile ducts were geographically associated with extracellular hyaluronan accumulated in the portal tracts of the livers, suggesting a role for CD44 and hyaluronan in the development of biliary proliferation. Cellular proliferation assays demonstrated that cholangiocyte propagation was accelerated by hyaluronan treatment and antagonized by small interfering RNA CD44 or anti-CD44 antibody. The study provides compelling evidence to suggest that proliferative biliary epithelia lining the intrahepatic bile ducts are a prime source of hepatic CD44. CD44-hyaluronan interaction, by enhancing biliary proliferation, may play a pathogenic role in the development of cholestatic liver diseases.  相似文献   
998.
A nitrilase gene blr3397 from Bradyrhizobium japonicum USDA110 was cloned and over-expressed in Escherichia coli, and the encoded protein was purified to give a nitrilase with a single band of about 34.5kD on SDS-PAGE. The molecular weight of the holoenzyme was about 340kD as determined by light scattering analysis, suggesting that nitrilase blr3397 self-aggregated to an active form with the native structure being a decamer. The V(max) and K(m) for phenylacetonitrile were 3.15U/mg and 4.36mM, respectively. The catalytic constant k(cat) and specificity constant k(cat)/K(m) were 111min(-1) and 2.6x10(4)min(-1)M(-1). This nitrilase is most active toward the hydrolysis of hydrocinnamonitrile among the tested substrates (4.3 times that of phenylacetonitrile). The nitrilase blr3397 shows higher activity towards the hydrolysis of aliphatic nitriles than that for the aromatic counterparts, and can be characterized as an aliphatic nitrilase in terms of activity. This nitrilase also possesses distinct features from the nitrilase bll6402 of the same microbe.  相似文献   
999.
UNC5H receptors (UNC5H1, UNC5H2, UNC5H3) are putative tumor suppressors whose expression is lost in numerous cancers. These receptors have been shown to belong to the so-called family of dependence receptors. Such receptors induce apoptosis when their ligand netrin-1 is absent, thus conferring a state of cellular dependence towards ligand presence. Along this line, these receptors may limit tumor progression because they induce the death of tumor cells that grow in settings of ligand unavailability. We show here that UNC5H receptors are localized to cholesterol-and sphingolipid-enriched membrane domains called lipid rafts. We then demonstrate that the lipid raft localization of UNC5H2 is required for the pro-apoptotic activity of unbound UNC5H2. We also propose that this lipid raft localization is probably mediated via the recruitment of adaptor protein(s) within the death domain of UNC5H2 but is not dependent on the post-translational modification by palmitoylation of UNC5H2 even though this palmitoylation is required for UNC5H2 pro-apoptotic activity. Moreover we show that the interaction of UNC5H2 with the downstream pro-apoptotic serine threonine kinase DAPk is dependent on both UNC5H2 lipid raft localization and palmitoylation. Thus, we propose that the UNC5H dependence receptors require lipid raft localization and palmitoylation to trigger apoptosis.  相似文献   
1000.
Legionella pneumophila is the predominant cause of Legionnaires disease, a severe and potentially fatal form of pneumonia. Recently, we identified an ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) from L. pneumophila, termed Lpg1905, which enhances intracellular replication of L. pneumophila in eukaryotic cells. Lpg1905 is the first prokaryotic member of the CD39/NTPDase1 family of enzymes, which are characterized by the presence of five apyrase conserved regions and the ability to hydrolyze nucleoside tri- and diphosphates. Here we examined the substrate specificity of Lpg1905 and showed that apart from ATP and ADP, the enzyme catalyzed the hydrolysis of GTP and GDP but had limited activity against CTP, CDP, UTP, and UDP. Based on amino acid residues conserved in the apyrase conserved regions of eukaryotic NTPDases, we generated five site-directed mutants, Lpg1905E159A, R122A, N168A, Q193A, and W384A. Although the mutations E159A, R122A, Q193A, and W384A abrogated activity completely, N168A resulted in decreased activity caused by reduced affinity for nucleotides. When introduced into the lpg1905 mutant strain of L. pneumophila, only N168A partially restored the ability of L. pneumophila to replicate in THP-1 macrophages. Following intratracheal inoculation of A/J mice, none of the Lpg1905 mutants was able to restore virulence to an lpg1905 mutant during lung infection, thereby demonstrating the importance of NTPDase activity to L. pneumophila infection. Overall, the kinetic studies undertaken here demonstrated important differences to mammalian NTPDases and different sensitivities to NTPDase inhibitors that may reflect underlying structural variations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号