首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4046篇
  免费   426篇
  国内免费   3篇
  2022年   36篇
  2021年   71篇
  2020年   51篇
  2019年   68篇
  2018年   68篇
  2017年   66篇
  2016年   110篇
  2015年   170篇
  2014年   177篇
  2013年   229篇
  2012年   268篇
  2011年   274篇
  2010年   149篇
  2009年   175篇
  2008年   219篇
  2007年   201篇
  2006年   193篇
  2005年   186篇
  2004年   169篇
  2003年   163篇
  2002年   162篇
  2001年   63篇
  2000年   68篇
  1999年   98篇
  1998年   71篇
  1997年   45篇
  1996年   33篇
  1995年   29篇
  1994年   30篇
  1993年   22篇
  1992年   39篇
  1991年   45篇
  1990年   48篇
  1989年   43篇
  1988年   44篇
  1987年   35篇
  1986年   43篇
  1985年   35篇
  1984年   37篇
  1983年   33篇
  1982年   22篇
  1981年   31篇
  1980年   23篇
  1979年   30篇
  1977年   20篇
  1976年   22篇
  1975年   22篇
  1974年   20篇
  1973年   25篇
  1972年   31篇
排序方式: 共有4475条查询结果,搜索用时 125 毫秒
31.
A hybrid gene has been constructed consisting of coding sequence for the membrane domain of the endoplasmic reticulum protein 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase linked to the coding sequence for the soluble enzyme Escherichia coli beta-galactosidase. Expression of the hybrid gene in transfected Chinese hamster ovary cells results in the production of a fusion protein (HMGal) which is localized in the endoplasmic reticulum. The fusion protein contains the high-mannose oligosaccharides characteristic of HMG-CoA reductase. Importantly the beta-galactosidase activity of HMGal decreases when low density lipoprotein is added to the culture media. Therefore, the membrane domain of HMG-CoA reductase is sufficient to determine both correct intracellular localization and sterol-regulation of degradation. Mutant fusion proteins which lack 64, 85, or 98 amino acid residues from within the membrane domain of HMG-CoA reductase are found to be localized in the endoplasmic reticulum and to retain beta-galactosidase activity. However, sterol-regulation of degradation is abolished.  相似文献   
32.
We have used a gene transfer system to investigate the relationship between expression of the rat Na,K-ATPase alpha 1 subunit gene and ouabain-resistant Na,K-ATPase activity. A cDNA clone encoding the entire rat Na,K-ATPase alpha 1 subunit was inserted into the expression vector pSV2neo. This construct (pSV2 alpha 1) conferred resistance to 100 microM ouabain to ouabain-sensitive CV-1 cells. Hybridization analysis of transfected clones revealed the presence of both rat-specific and endogenous Na,K-ATPase alpha 1 subunit DNA and mRNA sequences. A single form of highly ouabain-sensitive 86Rb+ uptake was detected in CV-1 cells, whereas two distinct classes of ouabain-inhibitable uptake were observed in transfectants. One class exhibited the high ouabain sensitivity of the endogenous monkey Na,K-ATPase, while the second class showed the reduced ouabain sensitivity characteristic of the rodent renal Na,K-ATPase. Examination of the ouabain-sensitive, sodium-dependent ATPase activity of the transfectants also revealed a low affinity component of Na,K-ATPase activity characteristic of the rodent kidney enzyme. These results suggest that expression of the rat alpha 1 subunit gene is directly responsible for ouabain-resistant Na,K-ATPase activity in transfected CV-1 cells.  相似文献   
33.
Gomori reported that aldehyde fuchsin stained the granules of pancreatic islet beta cells selectively and without need of permanganate pretreatment. Others adopted permanganate oxidation because it makes staining faster though much less selective. All aldehyde fuchsins are not equivalent, being made from "basic fuchsin" whose composition may vary from pure pararosanilin to one of its methylated homologs, rosanilin or a mixture. Mowry et al. have shown that only aldehyde fuchsin made from pararosanilin stained unoxidized pancreatic beta cells (PBC). Aldehyde fuchsins made from methylated homologs of pararosanilin stain PBC cells only after oxidation, which induces basophilia of other cells as well; these are less selective for PBC. Is the staining of PBC by aldehyde fuchsins due to insulin? Others have been unable to stain pure insulin with aldehyde fuchsins except in polyacrylamide gels and only after oxidation with permanganate. They have concluded that insulin contributed to the staining of oxidized but not of unoxidized PBC. This view denies any inherent validity of the more selective staining of unoxidized PBC cells as an indication of their insulin content. We describe here indisputable staining of unoxidized pure insulins by aldehyde fuchsin made with pararosanilin. Dried spots of insulin dissolved in the stain unless fixed beforehand. Spots of dried insulin solution made on various support media and fixed in warm formalin vapor were colored strongly by the stain. Insulin soaked Gelfoam sponges were dried, fixed in formalin vapor and processed into paraffin. In unoxidized paraffin sections, presumed insulin inside gel spaces was stained strongly by aldehyde pararosanilin. Finally, the renal tubules of unoxidized paraffin sections of kidneys from insulin-injected mice fixed in either Bouin's fluid or formalin were loaded with material stained deeply by aldehyde pararosanilin. This material was absent in renal tubules of mice receiving no insulin. The material in the spaces of insulin-soaked gels and in the renal tubules of insulin-injected mice was proven to be insulin by specific immunostaining of duplicate sections. The same material was also stained by aldehyde pararosanilin used after permanganate. So, this dye stains oxidized or unoxidized insulin if fixed adequately.  相似文献   
34.
Acardiac fetus in a triplet pregnancy   总被引:1,自引:0,他引:1  
The acardiac monster represents one of the most severe but rare congenital anomalies. It occurs only in multiple gestations associated with vascular anastomoses between the affected fetus and its co-twin. The prenatal diagnosis of an acardiac fetus must be suspected in any multiple gestation in which cardiac activity cannot be documented sonographically in a growing fetus. We report an acardiac fetus occurring in a spontaneously conceived triplet pregnancy. A review of the literature, including pathogenetic theories and sonographic reports, is discussed.  相似文献   
35.
36.
The selective type A and B cholecystokinin (CCK) receptor antagonists L364,718 and L365,260 were used to identify the receptor subtype that mediates the satiety effect of endogenous CCK. Male rats (n = 12–13/group), fed ground rat chow ad lib, received L364,718 (0, 1, 10, 100, or 1000 μg/kg IP) or L365,260 (0, 0.1, 1, 10, 100, 1000, or 10,000 μg/kg IP) 2 h after lights off, and food intake was measured 1.5, 3.5, and 5.5 h later. L364,718 significantly stimulated 1.5-h food intake by more than 40% at 10 μg/kg and higher doses; cumulative intake at 3.5 and 5.5 h remained elevated by about 20% at 1000 and 100 μg/kg of L364,718, respectively. In contrast, L365,260 had no significant stimulatory effect on feeding at any dose. The potency of L365,260 for antagonizing gastrin-stimulated gastric acid secretion was examined in unanesthetized rats. Male rats (n = 14), prepared with gastric and jugular vein cannulas, received doubling doses of gastrin (G-17I) (0.16–5 nmol/kg/h IV), each dose for 30 min, and gastric juice was collected for each 30-min period. G-17I stimulated gastric acid output dose dependently; the minimal effective dose was 0.16 nmol/kg/h, while maximal output (5-fold above basal) occurred at 5 nmol/kg/h. L365,260 (0, 1, 10, 100, 1000, or 10,000 μg/kg IV), administered 30 min before continuous infusion of G-17I (1.25 or 5 nmol/kg/h), significantly inhibited acid output only at 10,000 μg/kg; cumulative 60-min output was decreased by 60%. These results suggest that CCK acts at CCK-A receptors to produce satiety during the dark period in ad lib-feeding rats.  相似文献   
37.
38.
Ciliary activity is regulated by Ca2+ and cyclic nucleotides, but the molecular mechanisms of the regulation are unknown. We have tested the ability of Ca2+ and cyclic nucleotides to alter ciliary Mg2+-ATPase or to stimulate phosphorylation of axonemal dynein. Mg2+-ATPase activity in cilia and axonemes from Paramecium was stimulated 2-fold by micromolar Ca2+, but this Ca2+ sensitivity was lost upon solubilization of the dyneins from the axoneme. The Ca2+-sensitive component of ciliary Mg2+-ATPase activity was inhibited by the dynein inhibitors vanadate and Zn2+, but was insensitive to the calmodulin antagonists calmidazolium and melittin. Dynein activity in the high-salt extract from axonemes was also insensitive to calmidazolium. Calmodulin did not sediment with 22 S or 12 S dyneins on sucrose gradients containing Ca2+, but it did sediment in the region from 19 S to 14 S. Mg2+-ATPase activity in ciliary fractions was unaltered in the presence of cAMP or cGMP. However, polypeptides associated with the 22 S and 12 S dyneins, as well as proteins of 19 S, 15 S, and 8 S, were substrates for endogenous ciliary kinases. High molecular weight polypeptides that sedimented at 22 S and 19 S were phosphorylated in a cyclic nucleotide-stimulated manner.  相似文献   
39.
High submucosal Ca2+ (3.6-18 mM) significantly increased the secretion of a common high molecular weight fibrillar mucin (approx. Mr is greater than 2.10(6)) and also elicited the secretion of an additional low molecular weight component (approx. Mr 325,000). Low luminal Ca2+ (0.018 mM) also significantly increased the secretion of a common high molecular weight gelatinous mucin (approx. Mr is greater than 2.10(6)) and elicited the secretion of an additional low molecular weight component (approx. Mr 46,200). The additional low molecular weight components were more heavily sulphated (6.7 and 4.2%) than common high molecular weight mucins (2.1 and 1%). The low molecular weight components and high molecular weight mucins were secreted as aggregates which could be dissociated by EGTA. The low molecular weight components and high molecular weight mucins were different in the number of their glycoprotein constituents and in the ion-exchange chromatographic profiles and the carbohydrate and ester sulphate residue content of their acidic glycoproteins.  相似文献   
40.
Hepatitis B surface antigen (HBsAg) particles are composed of a major polypeptide, p25, and additional polypeptides of higher m.w., namely p33 and p39, are variably present. All three polypeptides share the 226 amino acid residues of the S region: p33 consists of the p25 sequence plus an NH2-terminal 55 residues (pre-S(2], and p39 consists of the p33 sequence plus an NH2-terminal 108-119 residues (pre-S(1). In previous studies we demonstrated the influence of two Ir genes on the humoral and cellular immune responses to the S region and identified nonresponder phenotypes (H-2f,s). Subsequent studies showed that the immune response to the pre-S(2) region was regulated by H-2-linked genes independently of the S region response, such that immunization of S region nonresponder, pre-(S2) region responder mice (H-2s) with HBsAg/p33 circumvented nonresponse to the S region. In the present study, we have extended this analysis to the pre-S(1) region of HBsAg, with the following results: 1) and pre-S(1) region is immunogenic at the T and B cell levels; 2) anti-pre-S(1) specific antibody production is regulated by H-2-linked genes and can be independent of anti-S and anti-pre-S(2) antibody production; 3) immunization of H-2f strains with HBsAg/p39 particles containing the pre-S(1) region can bypass nonresponsiveness to the S and pre-S(2) regions in terms of antibody production; 4) two synthetic peptides, p32-53 and p94-117, define murine and human antibody binding sites on the pre-S(1) region, and p1-21 and p12-32 define additional human antibody binding sites; 5) pre-S(1)-specific T cells can be elicited in S and pre-S(2) region nonresponder mice (H-2f) and provide functional T cell help for S-pre-S(2)-, and pre-S(1)-specific antibody production; and 6) a T cell recognition site in the pre-S(1) region, p12-32 was identified. These results are relevant to HBV vaccine development, and possibly to viral clearance mechanisms, since the higher m.w. polypeptides are preferentially expressed on intact virions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号