首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2615篇
  免费   330篇
  国内免费   1篇
  2022年   23篇
  2021年   56篇
  2020年   41篇
  2019年   48篇
  2018年   53篇
  2017年   39篇
  2016年   77篇
  2015年   106篇
  2014年   101篇
  2013年   124篇
  2012年   149篇
  2011年   163篇
  2010年   90篇
  2009年   116篇
  2008年   133篇
  2007年   112篇
  2006年   124篇
  2005年   113篇
  2004年   92篇
  2003年   89篇
  2002年   89篇
  2001年   50篇
  2000年   34篇
  1999年   50篇
  1998年   24篇
  1997年   20篇
  1995年   21篇
  1994年   18篇
  1992年   29篇
  1991年   33篇
  1990年   30篇
  1989年   42篇
  1988年   28篇
  1987年   34篇
  1986年   39篇
  1985年   24篇
  1984年   21篇
  1983年   26篇
  1982年   24篇
  1981年   21篇
  1980年   27篇
  1979年   25篇
  1978年   25篇
  1977年   27篇
  1976年   20篇
  1975年   20篇
  1974年   20篇
  1973年   30篇
  1972年   32篇
  1971年   21篇
排序方式: 共有2946条查询结果,搜索用时 31 毫秒
11.
Lactose and all of the major sugars (glucose, xylose, arabinose, galactose, and mannose) present in cellulose and hemicellulose were converted to ethanol by recombinant Escherichia coli containing plasmid-borne genes encoding the enzymes for the ethanol pathway from Zymomonas mobilis. Environmental tolerances, plasmid stability, expression of Z. mobilis pyruvate decarboxylase, substrate range, and ethanol production (from glucose, lactose, and xylose) were compared among eight American Type Culture Collection strains. E. coli ATCC 9637(pLO1297), ATCC 11303(pLO1297), and ATCC 15224(pLO1297) were selected for further development on the basis of environmental hardiness and ethanol production. Volumetric ethanol productivities per hour in batch culture were 1.4 g/liter for glucose (12%), 1.3 g/liter for lactose (12%), and 0.64 g/liter for xylose (8%). Ethanol productivities per hour ranged from 2.1 g/g of cell dry weight with 12% glucose to 1.3 g/g of cell dry weight with 8% xylose. The ethanol yield per gram of xylose was higher for recombinant E. coli than commonly reported for Saccharomyces cerevisiae with glucose. Glucose (12%), lactose (12%), and xylose (8%) were converted to (by volume) 7.2% ethanol, 6.5% ethanol, and 5.2% ethanol, respectively.  相似文献   
12.
Identification of a novel casein kinase activity in HeLa cell nuclei   总被引:1,自引:0,他引:1  
Three casein kinase activities have been resolved by column chromatography of HeLa cell nuclear extracts. In addition to casein kinases NI and NII, which have been described in other cell types, HeLa nuclei contain a third casein kinase activity which we have named NIII. NIII is a cyclic nucleotide-independent casein kinase which uses either Mg2+ or Mn2+ as a divalent cation, but is inhibited by increasing NaCl concentrations in the presence of Mg2+ and has optimal activity at 50 mM NaCl in the presence of Mn2+. In Mg2+, NIII uses only ATP as a phosphate donor, but in Mn2+ NIII transfers phosphate from either ATP or GTP. NIII phosphorylates the serine and threonine residues of casein, but does not phosphorylate phosvitin or calf thymus histones.  相似文献   
13.
The replacement of ser359 with ala359 at the P1 position in human alpha-1-proteinase inhibitor results in the production of a variant protein containing 15% of the inhibitory activity of the normal inhibitor. Separation of active from inactive inhibitor on anhydrochymotrypsin-sepharose yields a form which has a second order association rate with neutrophil elastase which is approximately one half that for the native protein. These data indicate that the P1 residue is not of primary importance during the interaction of proteinases with alpha-1-proteinase inhibitor. Since substitution of alanine for serine causes the formation, primarily, of inactive inhibitor the major function of ser359 probably involves proper folding to give a functionally active inhibitory conformation.  相似文献   
14.
Stabilization vs. degradation of Staphylococcus aureus metalloproteinase   总被引:1,自引:0,他引:1  
Purified Staphylococcus aureus metalloproteinase contains trace amounts of a serine proteinase which rapidly degrades the metalloproteinase when EDTA is present. However, no degradation occurs when Ca2+ is added or if the serine proteinase is removed by immunoaffinity chromatography. Selective chelation of Zn2+ by o-phenanthroline, which reversibly inactivates the metalloproteinase, does not result in the degradation of the apometalloproteinase, even with excess of serine proteinase. These data are interpreted as follows: EDTA chelates enzyme-bound Ca2+ and Zn2+, causing irreversible inactivation as well as a conformational change in the metal-free protein. This allows proteolysis by the contaminating serine proteinase and explains why the metalloproteinase purified from serine proteinase-deficient strains of S. aureus was previously thought to be stable to autolysis.  相似文献   
15.
Summary We evaluated three methods for the analysis of functional response data by asking whether a given method could discriminate among functional responses and whether it could accurately identify regions of positive density-dependent predation. We evaluated comparative curve fitting with foraging models, linear least-squares analysis using the angular transformation, and logit analysis. Using data from nature and simulations, we found that the analyses of predation rates with the angular transformation and logit analysis were best at consistently determining the true functional response, i.e. the model used to generate simulated data. These methods also produced the most accurate estimates of the true regions of density dependence. Of these two methods, functional response data best fulfill the assumptions of logit analysis. Angularly transformed predation rates only approximate the assumptions of linear leastsquares analysis for predation rates between 0.1 and 0.9. Lack-of-fit statistics can reveal inadequate fit of a model to a data set where simple regression statistics might erroneously suggest a good match.  相似文献   
16.
The selective type A and B cholecystokinin (CCK) receptor antagonists L364,718 and L365,260 were used to identify the receptor subtype that mediates the satiety effect of endogenous CCK. Male rats (n = 12–13/group), fed ground rat chow ad lib, received L364,718 (0, 1, 10, 100, or 1000 μg/kg IP) or L365,260 (0, 0.1, 1, 10, 100, 1000, or 10,000 μg/kg IP) 2 h after lights off, and food intake was measured 1.5, 3.5, and 5.5 h later. L364,718 significantly stimulated 1.5-h food intake by more than 40% at 10 μg/kg and higher doses; cumulative intake at 3.5 and 5.5 h remained elevated by about 20% at 1000 and 100 μg/kg of L364,718, respectively. In contrast, L365,260 had no significant stimulatory effect on feeding at any dose. The potency of L365,260 for antagonizing gastrin-stimulated gastric acid secretion was examined in unanesthetized rats. Male rats (n = 14), prepared with gastric and jugular vein cannulas, received doubling doses of gastrin (G-17I) (0.16–5 nmol/kg/h IV), each dose for 30 min, and gastric juice was collected for each 30-min period. G-17I stimulated gastric acid output dose dependently; the minimal effective dose was 0.16 nmol/kg/h, while maximal output (5-fold above basal) occurred at 5 nmol/kg/h. L365,260 (0, 1, 10, 100, 1000, or 10,000 μg/kg IV), administered 30 min before continuous infusion of G-17I (1.25 or 5 nmol/kg/h), significantly inhibited acid output only at 10,000 μg/kg; cumulative 60-min output was decreased by 60%. These results suggest that CCK acts at CCK-A receptors to produce satiety during the dark period in ad lib-feeding rats.  相似文献   
17.
18.
The expression of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II in Escherichia coli converted this organism from the production of organic acids to the production of ethanol. Ethanol was produced during both anaerobic and aerobic growth. The extent to which these ethanologenic enzymes were expressed correlated with the extent of ethanol production. The replacement of organic acids with ethanol as a metabolic product during aerobic and anaerobic growth resulted in dramatic increases in final cell density, indicating that these acids (and the associated decline in pH) are more damaging than the production of ethanol. Of the plasmids examined, the best plasmid for growth and ethanol production expressed pyruvate decarboxylase and alcohol dehydrogenase II at levels of 6.5 and 2.5 IU/mg of total cell protein, respectively.  相似文献   
19.
Ciliary activity is regulated by Ca2+ and cyclic nucleotides, but the molecular mechanisms of the regulation are unknown. We have tested the ability of Ca2+ and cyclic nucleotides to alter ciliary Mg2+-ATPase or to stimulate phosphorylation of axonemal dynein. Mg2+-ATPase activity in cilia and axonemes from Paramecium was stimulated 2-fold by micromolar Ca2+, but this Ca2+ sensitivity was lost upon solubilization of the dyneins from the axoneme. The Ca2+-sensitive component of ciliary Mg2+-ATPase activity was inhibited by the dynein inhibitors vanadate and Zn2+, but was insensitive to the calmodulin antagonists calmidazolium and melittin. Dynein activity in the high-salt extract from axonemes was also insensitive to calmidazolium. Calmodulin did not sediment with 22 S or 12 S dyneins on sucrose gradients containing Ca2+, but it did sediment in the region from 19 S to 14 S. Mg2+-ATPase activity in ciliary fractions was unaltered in the presence of cAMP or cGMP. However, polypeptides associated with the 22 S and 12 S dyneins, as well as proteins of 19 S, 15 S, and 8 S, were substrates for endogenous ciliary kinases. High molecular weight polypeptides that sedimented at 22 S and 19 S were phosphorylated in a cyclic nucleotide-stimulated manner.  相似文献   
20.
Considerable controversy exists concerning the intracellular concentration of ethanol in Saccharomyces cerevisiae during fermentation. This controversy results from problems in the measurement of the intracellular concentration of compounds like ethanol, which are being produced rapidly by metabolism and potentially diffuse rapidly from the cell. We used a new method for the determination of intracellular ethanol based on the exclusion of [14C]sorbitol to estimate the aqueous cell volume. This method avoided many of the technical problems in previous reports. Our results indicate that the extracellular concentrations of ethanol in fermenting suspensions of S. cerevisiae are less than or equal to those in the intracellular environment and do not increase to the high levels previously reported even during the most active stages of batch fermentation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号