全文获取类型
收费全文 | 177篇 |
免费 | 19篇 |
国内免费 | 1篇 |
专业分类
197篇 |
出版年
2015年 | 2篇 |
2012年 | 2篇 |
2010年 | 3篇 |
2009年 | 2篇 |
2008年 | 3篇 |
2006年 | 3篇 |
2004年 | 2篇 |
2003年 | 2篇 |
2002年 | 1篇 |
2001年 | 3篇 |
2000年 | 7篇 |
1999年 | 4篇 |
1998年 | 2篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1995年 | 3篇 |
1994年 | 3篇 |
1993年 | 3篇 |
1992年 | 8篇 |
1991年 | 11篇 |
1990年 | 7篇 |
1989年 | 1篇 |
1988年 | 7篇 |
1987年 | 9篇 |
1986年 | 10篇 |
1985年 | 3篇 |
1984年 | 2篇 |
1983年 | 7篇 |
1982年 | 2篇 |
1981年 | 3篇 |
1980年 | 5篇 |
1979年 | 5篇 |
1978年 | 5篇 |
1977年 | 2篇 |
1976年 | 5篇 |
1975年 | 4篇 |
1974年 | 7篇 |
1973年 | 6篇 |
1972年 | 4篇 |
1971年 | 5篇 |
1970年 | 5篇 |
1969年 | 1篇 |
1968年 | 5篇 |
1967年 | 3篇 |
1964年 | 3篇 |
1961年 | 2篇 |
1960年 | 3篇 |
1951年 | 1篇 |
1946年 | 1篇 |
1943年 | 1篇 |
排序方式: 共有197条查询结果,搜索用时 31 毫秒
1.
T W Traut 《CRC critical reviews in biochemistry》1988,23(2):121-169
The 72 enzymes in nucleotide metabolism, from all sources, have a distribution of subunit sizes similar to those from other surveys: an average subunit Mr of 47,900, and a median size of 33,300. The same enzyme, from whatever source, usually has the same subunit size (there are exceptions); enzymes having a similar activity (e.g., kinases, deaminases) usually have a similar subunit size. Most simple enzymes in all EC classes (except class 6, ligases/synthetases) have subunit sizes of less than 30,000. Since structural domains defined in proteins tend to be in the Mr range of 5,000 to 30,000, it may be that most simple enzymes are formed as single domains. Multifunctional proteins and ligases have subunits generally much larger than Mr 40,000. Analyses of several well-characterized ligases suggest that they also have two or more distinct catalytic sites, and that ligases therefore are also multifunctional proteins, containing two or more domains. Cooperative kinetics and evidence for allosteric regulation are much more frequently associated with larger enzymes: such complex functions are associated with only 19% of enzymes having a subunit Mr less than or equal to 29,000, and with 86% of all enzymes having a subunit Mr greater than 50,000. In general, larger enzymes have more functions. Only 20% of these enzymes appear to be monomers; the rest are homopolymers and rarely are they heteropolymers. Evidence for the reversible dissociation of homopolymers has been found for 15% of the enzymes. Such changes in quaternary structure are usually mediated by appropriate physiological effectors, and this may serve as a mechanism for their regulation between active and less active forms. There is considerable structural organization of the various pathways: 19 enzymes are found in various multifunctional proteins, and 13 enzymes are found in different types of multienzyme complexes. 相似文献
2.
Peter Alliger Wolfgang Traut Eric Carstens Ellen Fanning 《Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression》1988,951(2-3)
A monkey cell factor that interacts specifically with double- and single-stranded DNA sequences in the early domain of the simian virus 40 (SV40) core origin of replication was identified using gel-retention assays. The protein was enriched over 1200-fold using ion-exchange and affinity chromatography on single-strand DNA cellulose. Binding of protein to mutant origin DNA restriction fragments was correlated with replication activity of the mutant DNAs. Exonuclease footprint experiments on single-stranded DNA revealed prominent pause sites in the early domain of the core origin. The results suggest that this cellular protein may be involved in SV40 DNA replication. 相似文献
3.
An autoantibody reactive with a conserved sequence of 28 S rRNA (anti-28 S) was identified in serum from a patient with systemic lupus erythematosus. Anti-28 S protected a unique 59-nucleotide fragment synthesized in vitro against RNase T1 digestion. RNA sequence analysis revealed that it corresponded to residues 1944-2002 in human 28 S rRNA and 1767-1825 in mouse 28 S rRNA. These sequences are identical and highly conserved throughout all known eukaryotic 28 S rRNAs. In addition, this fragment is homologous to residues 1052-1110 of Escherichia coli 23 S rRNA that lies within the GTP hydrolysis center of the 50 S ribosomal subunit. Anti-28 S and its Fab fragments strongly inhibited poly(U)-directed polyphenylalanine synthesis, but had no effect on ribosomal peptidyltransferase activity. This effect resulted from inhibition of the binding of elongation factors EF-1 alpha and EF-2 to ribosomes and of the associated GTP hydrolysis. The inhibitory effect was almost completely suppressed by preincubation of anti-28 S with 28 S rRNA or in vitro synthesized RNA fragments containing the immunoreactive region. These results show that the immunoreactive conserved region of 28 S rRNA participates in the interaction of ribosomes with the two elongation factors in protein synthesis. 相似文献
4.
Identification of a region of Escherichia coli ribosomal protein L2 required for the assembly of L16 into the 50 S ribosomal subunit 总被引:3,自引:0,他引:3
In vitro mutagenesis of rplB was used to generate changes in a conserved region of Escherichia coli ribosomal protein L2 between Gly221 and His231. Mutants were selected by temperature sensitivity using an inducible expression system. A mutant L2 protein with the deletion of Thr222 to Asp228 was readily distinguishable from wild-type L2 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and ribosomes from the strain overexpressing this mutant protein were characterized by sucrose density gradient centrifugation and protein composition. In addition to 30 S and 50 S ribosomal subunits, cell lysates contained a new component that sedimented at 40 S in 1 mM Mg2+ and at 48 S in 10 mM Mg2+. These particles contained mutant L2 protein exclusively, completely lacked L16, and had reduced amounts of L28, L33, and L34. They did not reassociate with 30 S ribosomal subunits and were inactive in polyphenylalanine synthesis. Other mutants in the same conserved region, including the substitution of His229 by Gln229, produced similar aberrant 50 S particles that sedimented at 40 S and failed to associate with 30 S subunits. 相似文献
5.
Steve Horvath Abu NM Nazmul-Hossain Rodney PE Pollard Frans GM Kroese Arjan Vissink Cees GM Kallenberg Fred KL Spijkervet Hendrika Bootsma Sara A Michie Sven U Gorr Ammon B Peck Chaochao Cai Hui Zhou David TW Wong 《Arthritis research & therapy》2012,14(6):1-13
Bone tissue has an exceptional quality to regenerate to native tissue in response to injury. However, the fracture repair process requires mechanical stability or a viable biological microenvironment or both to ensure successful healing to native tissue. An improved understanding of the molecular and cellular events that occur during bone repair and remodeling has led to the development of biologic agents that can augment the biological microenvironment and enhance bone repair. Orthobiologics, including stem cells, osteoinductive growth factors, osteoconductive matrices, and anabolic agents, are available clinically for accelerating fracture repair and treatment of compromised bone repair situations like delayed unions and nonunions. Preclinical and clinical studies using biologic agents like recombinant bone morphogenetic proteins have demonstrated an efficacy similar or better than that of autologous bone graft in acute fracture healing. A lack of standardized outcome measures for comparison of biologic agents in clinical fracture repair trials, frequent off-label use, and a limited understanding of the biological activity of these agents at the bone repair site have limited their efficacy in clinical applications. 相似文献
6.
Protein topography of the 40 S ribosomal subunit from Saccharomyces cerevisiae as shown by chemical cross-linking 总被引:3,自引:0,他引:3
Protein-protein cross-linking was used to examine the spatial arrangement of proteins within the 40 S ribosomal subunits of Saccharomyces cerevisiae. Purified ribosomal subunits were treated with either 2-iminothiolane or dimethyl 3,3'-dithiobispropionimidate under conditions such that the ribosomal particle was intact and that formation of 40 S subunit dimers was minimized. Proteins were extracted from the treated subunits and fractionated on Sephadex G-150 or by acid-urea-polyacrylamide gel electrophoresis. Cross-linked proteins in these fractions were analyzed by two-dimensional diagonal sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Constituent members of cross-linked pairs were radiolabeled with 125I and identified by two-dimensional gel electrophoresis and comparison with nonradioactive ribosomal protein markers. Forty-two pairs involving 25 of the 32 40 S subunit proteins were identified. Many proteins were detected in several cross-linked dimers. These proteins with multiple cross-links form foci for the construction of a schematic model of the spatial arrangement of proteins within the 40 S subunit. 相似文献
7.
8.
N-Carbamoyl-beta-alanine (NC beta A) amidohydrolase (EC 3.5.1.6) is regulated in opposing fashion by the substrate, NC beta A and the product, beta-alanine. The native enzyme from rat liver has a molecular weight of 235,000 in the absence of ligands. NC beta A and substrate analogs (N-amidino-beta-alanine, N-carbamoyl-glycine) produced association of the enzyme. beta-Alanine and its analog gamma-aminobutyrate caused dissociation of the enzyme and produced inhibition. Negative cooperativity was observed for the binding of all ligands as measured by the change in polymerization of the enzyme, with an average Hill coefficient (napp) of 0.5. Enzyme that had been dissociated by preincubation with beta-alanine had little or no initial activity; only after a lag of 9 s was a steady state progress curve evident. The existence of a regulatory site is proposed as a model to explain physical and kinetic data. The enzyme activity was highest in rat liver and detectable in kidney; activity was not detected in brain, lung, muscle, or spleen of rat, nor in mouse Ehrlich ascites tumor cells. The rat liver enzyme has a pH optimum of 6.8, with a Km of 6.5 microM for NC beta A and a Ki of 1.08 mM for beta-alanine at this pH. 相似文献
9.
A long-range repeat family of more than 50 kb repeat size is clustered in Chromosomes (Chr) 1 of Mus musculus and M. spretus. In M. musculus this long-range repeat family shows considerable variation of copy-number frequency and contains coding regions for at least two genes. In an intron of a gene, which is part of the repeat, a B2 small interspersed repetitive element (SINE) is inserted at identical positions. The B2 element is present in all copies of the long-range repeat family; it was presumably a component of the ancestral single-copy precursor sequence that gave rise by amplification to the repeat family. Copies of the long-range repeat family vary with respect to the number of TAAA tandem repeats in the A-rich 3 end region of the B2 element. As inferred from polymerase chain reaction (PCR) data, presence and frequency of repeat number variants in the (TAAA)n block are strain and species specific. The B2 element and its flanking regions were sequenced from two copies of the long-range repeat family. Sequence divergence between the two copies (only non-CG base substitutions and deletions/insertions) was determined to be 2.6%. Based on the drift rate in human Alu elements and a correction for the higher drift rates in rodents, and estimate for the divergence time of 1.7 million years was calculated. Since the long-range repeat family is present in M. musculus and M. spretus, it must have evolved by amplification before the separation of the two species about 1–4 million years ago. 相似文献
10.
Copy numbers and variation of a clustered long-range repeat family on Chromosome (Chr) 1 have been studied in different species of the genus Mus. The repeat sequence was present in all, as inferred from cross-hybridization with probes derived from the Mus musculus repeat family. Copy numbers determined by dot blot hybridization were very low, from three to six per haploid genome in M. caroli, M. cervicolor, and M. cookii. These species form one branch of the phylogenetic tree in the genus Mus. In the other group of phylogenetically related species—M. spicilegus, M. spretus, M. musculus and M. macedonicus—copy numbers ranged from 6 to 1810 per haploid genome. The repeat cluster is cytogenetically visible as a fine C-band in M. macedonicus and as a C-band positive homogeneously staining region (HSR) in several populations of M. m. domesticus and M. m. musculus. When cytogenetically visible, the clusters contained from 179 to 1810 repeats. Intragenomic restriction fragment length polymorphisms (RFLPs), which reflect sequence variation among different copies of the long-range repeat family, increased with higher copy numbers. The high similarity of the RFLP pattern among genomes with C-band positive regions in Chr 1 of M. m. musculus, M. m. domesticus, and M. macedonicus points to a close evolutionary relationship of their Chr 1 repeat families. 相似文献