首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   254篇
  免费   30篇
  284篇
  2019年   2篇
  2018年   2篇
  2017年   9篇
  2016年   11篇
  2015年   15篇
  2014年   20篇
  2013年   8篇
  2012年   19篇
  2011年   15篇
  2010年   10篇
  2009年   5篇
  2008年   5篇
  2007年   8篇
  2006年   13篇
  2005年   13篇
  2004年   8篇
  2003年   12篇
  2002年   5篇
  2001年   8篇
  2000年   10篇
  1999年   11篇
  1998年   11篇
  1997年   3篇
  1996年   7篇
  1995年   7篇
  1994年   2篇
  1992年   4篇
  1990年   1篇
  1989年   5篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1977年   4篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1969年   2篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
  1959年   1篇
  1958年   1篇
  1934年   1篇
排序方式: 共有284条查询结果,搜索用时 15 毫秒
31.
The binding of MgATP and fructose-6-phosphate to phosphofructokinase-2 from Escherichia coli induces conformational changes that result in significant differences in the x-ray-scattering profiles compared with the unligated form of the enzyme. When fructose- 6-phosphate binds to the active site of the enzyme, the pair distribution function exhibits lower values at higher distances, indicating a more compact structure. Upon binding of MgATP to the allosteric site of the enzyme, the intensity at lower angles increases as a consequence of tetramer formation, but differences along higher angles also suggest changes at the tertiary structure level. We have used homology modeling to build the native dimeric form of phosphofructokinase-2 and fitted the experimental scattering curves by using rigid body movements of the domains in the model, similar to those observed in known homologous structures. The best fit with the experimental data of the unbound protein was achieved with open conformations of the domains in the model, whereas domain closure improves the agreement with the scattering of the enzyme-fructose-6-phosphate complex. Using the same approach, we utilized the scattering curve of the phosphofructokinase-2-MgATP complex to model the arrangement and conformation of dimers in the tetramer. We observed that, along with tetramerization, binding of MgATP to the allosteric site induces domain closure. Additionally, we used the scattering data to restore the low resolution structure of phosphofructokinase-2 (free and bound forms) by an ab initio procedure. Based on these findings, a proposal is made to account for the inhibitory effect of MgATP on the enzymatic activity.  相似文献   
32.
Destruction of target cells by cytotoxic T lymphocytes (CTLs) or natural killer (NK) cells requires the coordinated action of the pore forming protein perforin (Pfp) and the granzyme (Gzm) family of serine proteases. The activation of a number of serine proteases, including GzmA and B, is predominately mediated by cathepsin C (CatC). Deficiencies in CatC-null mice were therefore expected to replicate the defects observed in GzmAB-deficient mice. We have previously determined that GzmAB-deficient mice exhibit increased susceptibility to murine cytomegalovirus (MCMV) infection. Here, we have compared the ability of CatC(-/-) mice to control MCMV infection with that of GzmAB-deficient animals. We found that CatC(-/-) mice have organ-specific defects in the ability to control MCMV replication, a phenotype that is distinct to that observed in GzmAB(-/-) mice. Significantly, the cytolytic function of CatC-deficient NK cells and CTLs elicited during infection was indistinguishable from that of wild-type cells. Hence, CatC is involved in limiting MCMV replication; however, this effect is independent of its role in promoting effector cytolytic activity. These data provide evidence for a novel and unexpected role of CatC during viral infection.  相似文献   
33.
34.
35.
36.

Introduction

This study aimed to evaluate whether profiles of several soluble mediators in synovial fluid and cartilage tissue are pathology-dependent and how their production is related to in vitro tissue formation by chondrocytes from diseased and healthy tissue.

Methods

Samples were obtained from donors without joint pathology (n = 39), with focal defects (n = 65) and osteoarthritis (n = 61). A multiplex bead assay (Luminex) was performed measuring up to 21 cytokines: Interleukin (IL)-1α, IL-1β, IL-1RA, IL-4, IL-6, IL-6Rα, IL-7, IL-8, IL-10, IL-13, tumor necrosis factor (TNF)α, Interferon (IFN)γ, oncostatin M (OSM), leukemia inhibitory factor (LIF), adiponectin, leptin, monocyte chemotactic factor (MCP)1, RANTES, basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), vascular growth factor (VEGF).

Results

In synovial fluid of patients with cartilage pathology, IL-6, IL-13, IFNγ and OSM levels were higher than in donors without joint pathology (P ≤0.001). IL-13, IFNγ and OSM were also different between donors with cartilage defects and OA (P <0.05). In cartilage tissue from debrided defects, VEGF was higher than in non-pathological or osteoarthritic joints (P ≤0.001). IL-1α, IL-6, TNFα and OSM concentrations (in ng/ml) were markedly higher in cartilage tissue than in synovial fluid (P <0.01). Culture of chondrocytes generally led to a massive induction of most cytokines (P <0.001). Although the release of inflammatory cytokines was also here dependent on the pathological condition (P <0.001) the actual profiles were different from tissue or synovial fluid and between non-expanded and expanded chondrocytes. Cartilage formation was lower by healthy unexpanded chondrocytes than by osteoarthritic or defect chondrocytes.

Conclusions

Several pro-inflammatory, pro-angiogenic and pro-repair cytokines were elevated in joints with symptomatic cartilage defects and/or osteoarthritis, although different cytokines were elevated in synovial fluid compared to tissue or cells. Hence a clear molecular profile was evident dependent on disease status of the joint, which however changed in composition depending on the biological sample analysed. These alterations did not affect in vitro tissue formation with these chondrocytes, as this was at least as effective or even better compared to healthy chondrocytes.  相似文献   
37.
Brain tumor treatment employing methotrexate (MTX) is limited by the efflux mechanism of Pg-p on the blood–brain barrier. We aimed to investigate MTX-loaded chitosan or glycol chitosan (GCS) nanoparticles (NPs) in the presence and in the absence of a coating layer of Tween 80 for brain delivery of MTX. The effect of a low Tween 80 concentration was evaluated. MTX NPs were formulated following the ionic gelation technique and size and zeta potential measurements were acquired. Transport across MDCKII-MDR1 monolayer and cytotoxicity studies against C6 glioma cell line were also performed. Cell/particles interaction was visualized by confocal microscopy. The particles were shown to be cytotoxic against C6 cells line and able to overcome MDCKII-MDR1 cell barrier. GCS-based NPs were the most cytotoxic NPs. Confocal observations highlighted the internalization of Tween 80-coated fluorescent NPs more than Tween 80-uncoated NPs. The results suggest that even a low concentration of Tween 80 is sufficient for enhancing the transport of MTX from the NPs across MDCKII-MDR1 cells. The nanocarriers represent a promising strategy for the administration of MTX to brain tumors which merits further investigations under in vivo conditions.  相似文献   
38.
Granule-mediated cell killing by cytotoxic lymphocytes requires the combined actions of a membranolytic protein, perforin, and granule-associated granzymes, but the mechanism by which they jointly kill cells is poorly understood. We have tested a series of membrane-disruptive agents including bacterial pore-forming toxins and hemolytic complement for their ability to replace perforin in facilitating granzyme B-mediated cell death. As with perforin, low concentrations of streptolysin O and pneumolysin (causing <10% (51)Cr release) permitted granzyme B-dependent apoptosis of Jurkat and Yac-1 cells, but staphylococcal alpha-toxin and complement were ineffective, regardless of concentration. The ensuing nuclear apoptotic damage was caspase dependent and included cleavage of poly(ADP-ribose) polymerase, suggesting a mode of action similar to that of perforin. The plasma membrane lesions formed at low dose by perforin, pneumolysin, and streptolysin did not permit diffusion of fluorescein-labeled proteins as small as 8 kDa into the cell, indicating that large membrane defects are not necessary for granzymes (32 to 65 kDa) to enter the cytosol and induce apoptosis. The endosomolytic toxin, listeriolysin O, also effected granzyme B-mediated cell death at concentrations which produced no appreciable cell membrane damage. Cells pretreated with inhibitors of endosomal trafficking such as brefeldin A took up granzyme B normally but demonstrated seriously impaired nuclear targeting of granzyme B when perforin was also added, indicating that an important role of perforin is to disrupt vesicular protein trafficking. Surprisingly, cells exposed to granzyme B with perforin concentrations that produced nearly maximal (51)Cr release (1,600 U/ml) also underwent apoptosis despite excluding a 8-kDa fluorescein-labeled protein marker. Only at concentrations of >4,000 U/ml were perforin pores demonstrably large enough to account for transmembrane diffusion of granzyme B. We conclude that pore formation may allow granzyme B direct cytosolic access only when perforin is delivered at very high concentrations, while perforin's ability to disrupt endosomal trafficking may be crucial when it is present at lower concentrations or in killing cells that efficiently repair perforin pores.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号