首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53224篇
  免费   17363篇
  国内免费   2328篇
  72915篇
  2024年   48篇
  2023年   289篇
  2022年   653篇
  2021年   1311篇
  2020年   2751篇
  2019年   4403篇
  2018年   4498篇
  2017年   4697篇
  2016年   4923篇
  2015年   5397篇
  2014年   5297篇
  2013年   5981篇
  2012年   4223篇
  2011年   3623篇
  2010年   4448篇
  2009年   3099篇
  2008年   2377篇
  2007年   1883篇
  2006年   1743篇
  2005年   1697篇
  2004年   1514篇
  2003年   1390篇
  2002年   1266篇
  2001年   949篇
  2000年   839篇
  1999年   699篇
  1998年   343篇
  1997年   246篇
  1996年   234篇
  1995年   232篇
  1994年   195篇
  1993年   149篇
  1992年   215篇
  1991年   174篇
  1990年   152篇
  1989年   153篇
  1988年   107篇
  1987年   111篇
  1986年   100篇
  1985年   79篇
  1984年   49篇
  1983年   62篇
  1982年   30篇
  1981年   35篇
  1980年   20篇
  1979年   36篇
  1978年   29篇
  1977年   26篇
  1976年   19篇
  1972年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
181.
182.
A moving aeration-membrane (MAM) bioreactor was employed for the production of 2 μg/mL of tissue type Plasminogen Activator (tPA) in serum free medium from normal human fibroblast cells. This system could maintain high cell density for long periods of steady state conditions in perfusion cultivation. Under normal operating conditions, shear stress was as low as 0.65 dynes/cm2 at the agitation speed of 80 rpm. Even though cell density gradually decreased with increasing agitation speed, tPA production increased linearly with increasing shear stress within a moderate range. This culture system allowed production of 2 μg tPA/mL while maintaining a high cell density of 1.0×107 viable cells/mL.  相似文献   
183.
184.
Plasmonics - The funneling profile of enhanced light transmission through a subwavelength slit in a perfect electric conductor is studied with finite-difference time-domain simulation. From the...  相似文献   
185.
Free radical damage caused by ferrous iron is involved in the pathogenesis of secondary brain injury after intracerebral hemorrhage (ICH). NF‐E2‐related factor 2 (Nrf2), a major phase II gene regulator that binds to antioxidant response element, represents an important cellular cytoprotective mechanism against oxidative damage. We hypothesized that Nrf2 might protect astrocytes from damage by Fe2+. Therefore, we examined cytotoxicity in primary astrocytes induced by iron overload and evaluated the effects of Fe2+ on Nrf2 expression. The results demonstrated that 24‐h Fe2+ exposure exerted time‐ and concentration‐dependent cytotoxicity in astrocytes. Furthermore, Fe2+ exposure in astrocytes resulted in time‐ and concentration‐dependent increases in Nrf2 expression, which preceded Fe2+ toxicity. Nrf2‐specific siRNA further knocked down Nrf2 levels, resulting in greater Fe2+‐induced astrocyte cytotoxicity. These data indicate that induction of Nrf2 expression could serve as an adaptive self‐defense mechanism, although it is insufficient to completely protect primary astrocytes from Fe2+‐induced neurotoxicity.  相似文献   
186.
This study was aimed at understanding the main abiotic environmental factors controlling the distribution patterns of abundance and composition of phytoplankton (size less than 10 μm) assemblages in the coastal waters of south‐eastern Côte d'Ivoire. Data were collected during two cruises, in January (low‐water period) and October (high‐water period) of 2014. A total of 67 species were identified and assigned to Bacillariophyceae (49%), Cyanophyceae (21%), Chlorophyceae (13%), Euglenophyceae (10%), Dinophyceae (4%) and Chrysophyceae (3%). Three biotic zones (I, IIA and IIB) were distinguishable on a Kohonen self‐organizing map after an unsupervised learning process. The diatom genera Eunotia sp., Navicula sp. and Actinoptychus senarius are significantly associated with I, IIA and IIB biotic zones, respectively. A clear seasonal cum salinity trend was apparent in phytoplankton distribution patterns. Turbidity and nitrate levels were the main abiotic factors controlling phytoplankton distribution in I, the upland tidal regions of the lagoon. In regions along the lagoon–sea continuum, phosphate and turbidity exert the most control during the low‐water season (IIA), while total dissolved solids control phytoplankton distribution during the high‐water season (IIB). These are climate‐sensitive parameters whose concentrations depend on prevailing hydroclimatic processes. Therefore, seasonality can have important consequences on phytoplankton community and inadvertently the productivity of these systems.  相似文献   
187.

Background

Several case-control studies have been performed to examine the association of genetic variants in lysyl oxidase (LOX) with keratoconus. However, the results remained inconclusive and great heterogeneity might exist across populations.

Method

A comprehensive literature search for studies that published up to June 25, 2015 was performed. Summary odds ratios (OR) and 95% confidence intervals (CI) of each single nucleotide polymorphism (SNP) were estimated with fixed effects model when I 2<50% in the test for heterogeneity or random effects model when I 2>50%. Publication bias was evaluated using funnel plots and Egger’s test.

Results

A total of four studies including 1,467 keratoconus cases and 4,490 controls were involved in this meta-analysis. SNPs rs2956540 and rs10519694 showed significant association with keratoconus, with ORs of 0.71 (95% CI: 0.63–0.80, P = 1.43E-08) and 0.77 (95% CI: 0.61–0.97, P = 0.026), respectively. In contrast, our study lacked sufficient evidences to support the association of rs1800449/rs2288393 with keratoconus across populations.

Conclusion

This meta-analysis suggested that two LOX variants, rs2956540 and rs10519694, may affect individual susceptibility to keratoconus, while distinct heterogeneity existed within this locus. Larger-scale and multi-ethnic genetic studies on keratoconus are required to further validate the results.  相似文献   
188.
189.
190.
The self‐assembling MexA‐MexB‐OprM efflux pump system, encoded by the mexO operon, contributes to facile resistance of Pseudomonas aeruginosa by actively extruding multiple antimicrobials. MexR negatively regulates the mexO operon, comprising two adjacent MexR binding sites, and is as such highly targeted by mutations that confer multidrug resistance (MDR). To understand how MDR mutations impair MexR function, we studied MexR‐wt as well as a selected set of MDR single mutants distant from the proposed DNA‐binding helix. Although DNA affinity and MexA‐MexB‐OprM repression were both drastically impaired in the selected MexR‐MDR mutants, MexR‐wt bound its two binding sites in the mexO with high affinity as a dimer. In the MexR‐MDR mutants, secondary structure content and oligomerization properties were very similar to MexR‐wt despite their lack of DNA binding. Despite this, the MexR‐MDR mutants showed highly varying stabilities compared with MexR‐wt, suggesting disturbed critical interdomain contacts, because mutations in the DNA‐binding domains affected the stability of the dimer region and vice versa. Furthermore, significant ANS binding to MexR‐wt in both free and DNA‐bound states, together with increased ANS binding in all studied mutants, suggest that a hydrophobic cavity in the dimer region already shown to be involved in regulatory binding is enlarged by MDR mutations. Taken together, we propose that the biophysical MexR properties that are targeted by MDR mutations—stability, domain interactions, and internal hydrophobic surfaces—are also critical for the regulation of MexR DNA binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号