首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   1篇
  22篇
  2016年   1篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  2001年   3篇
  1999年   1篇
  1996年   1篇
  1995年   2篇
排序方式: 共有22条查询结果,搜索用时 0 毫秒
11.
12.
Differential ethylene-inducible expression of cellulase in pepper plants   总被引:1,自引:0,他引:1  
Ethylene promotes the abscission of leaves and the ripening of fruits in pepper plants, and in both events an increase in cellulase activity is observed. However, two enzyme isoforms (pI 7.2 and 8.5, respectively) are differentially involved in the two physiological phenomena. The pI 8.5 form has been purified from ripe fruits. It is a glycoprotein with an apparent molecular mass of 54 kDa. Two short peptides were sequenced and a very high homology to a tomato cellulase was observed. Polyclonal antibodies, raised against the purified enzyme, have allowed us to demonstrate that the observed ethylene-induced increase in cellulase activity is paralleled by de novo synthesis of protein. Three cDNAs (CX1, CX2 and CX3), encoding different cellulases, were obtained and characterized and their expression investigated. Accumulation of all three mRNAs is induced by ethylene treatment, though to different levels. CX1 is mainly expressed in ripe fruits while CX2 is especially found in abscission zones. CX3 accumulates at very low levels in activated abscission zones. Comparisons with other known cellulases demonstrate clear heterogeneity within the higher plant cellulases. Differences in ethylene inducibility and molecular structure suggest different physiological roles for cellulase in pepper plants.This paper is dedicated to Prof. G. Dall'Olio on the occasion of his 70th birthday.  相似文献   
13.
14.
15.
In pear, fruit ripening is not homogeneous, which leads to problems in harvest and storage management. To identify factors affecting the ripening homogeneity, structural, biochemical and molecular parameters were investigated. Fruits were sampled from trees trained with three different systems, spindle, V-shaped and bi-axis, and were further grouped on the basis of canopy position (top or bottom) and branch type (short-old-spurs, 3-year-old or older branches, 2-year-old branches and twigs). This study confirmed that the position in the canopy plays a crucial role in fruit ripening in V-shaped and bi-axis training systems. Fruit on the spindle training system was unaffected by the position of the canopy, albeit showing a large variability within the fruit of each part of the canopy. Such variability is much lower in the bi-axis and V-shaped systems. The spindle training system had no similarity in homogeneity indices between the molecular and physiological measurements. Partial least square discriminate analysis (PLS-DA) showed differences in training system, branch type and canopy position separated by the different physiological and molecular parameters. Short-old-spurs and twigs had the highest homogeneity and least variability in all training systems and branch types. In addition, partial least square path modelling (PLS-PM) was able to identify a high correlation between physiological measurements and ripening compared to that of molecular data.  相似文献   
16.
17.
Notwithstanding the economic importance of non-climacteric fruits like grape and strawberry, little is known about the mechanisms that regulate their ripening. Up to now no growth regulator has emerged with a primary role similar to that played by ethylene in the ripening of the climacteric fruits. Strawberries can produce ethylene, although in limited amounts. Two cDNAs coding for enzymes of the ethylene biosynthetic pathway (i.e. FaACO1 and FaACO2), and three cDNAs encoding different ethylene receptors have been isolated. Two receptors (i.e. FaEtr1 and FaErs1) belong to the type-I while the third (i.e. FaEtr2) belongs to the type-II group. The expression of both the ACO and the receptor-encoding genes has been studied in fruits at different stages of development and in fruits treated with hormones (i.e. ethylene and the auxin analogue NAA). All the data thus obtained have been correlated to the known data about ethylene production by strawberry fruits. Interestingly, a good correlation has resulted between the expression of the genes described in this work and the data of ethylene production. In particular, similarly to what occurs during climacteric fruit ripening, there is an increased synthesis of receptors concomitant with the increased synthesis of ethylene in strawberries as well. Moreover, the receptors mostly expressed in ripening strawberries are the type-II ones, that is those with a degenerate histidine-kinase domain. Since the latter domain is thought to establish a weaker link to the CTR1 proteins, even the little ethylene produced by ripening strawberries might be sufficient to trigger ripening-related physiological responses.  相似文献   
18.
We have cloned and sequenced a full-length cDNA for uroporphyrinogen decarboxylase (UROD, EC 4.1.1.37) from tobacco (Nicotiana tabacum L.) and a partial cDNA clone from barley (Hordeum vulgare L.). The cDNA of tobacco encodes a protein of 43 kDa, which has 33% overall similarity to UROD sequences determined from other organisms. We propose that tobacco UROD has an N-terminal extension of 39 amino acid residues. This extension is most likely a chloroplast transit sequence. The in vitro translation product of UROD was imported into pea chloroplasts and processed to ca. 39 kDa. A truncated cDNA, from which the putative transit peptide had been deleted, was used to over-express the mature UROD in Escherichia coli. Purified protein showed UROD activity, thus providing an adequate source for subsequent enzymatic characterization and inhibition studies. Expression of UROD was investigated by northern and western blot analysis during greening of etiolated barley seedlings, and in segments of barley primary leaves grown under day/night cycles. The amount of RNA and protein increased during illumination Maximum UROD-RNA levels were detected in the basal segments relative to the top of the leaf.Abbreviations ALA 5-aminolevulinic acid - copro coproporphyrin - coprogen coproporphyrinogen - protogen IX protoporphyrinogen IX - UROD uroporphyrinogen decarboxylase - uro uroporphyrin - urogen uroporphyrinogen  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号